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APPLICATIONS AND REVIEW OF FOURIER TRANSFORM/SERIES  
(Copyright 2001, David T. Sandwell) 
 
(Reference – The Fourier Transform and its Application, second edition, R.N. Bracewell, 
McGraw-Hill Book Co., New York, 1978.) 
 

It may seem unusual that we begin a course on Geodynamics by reviewing fourier transforms 
and fourier series.  However, you will see that fourier analysis is used in almost every aspect of 
the subject ranging from solving linear differential equations to developing computer models, to 
the processing and analysis of data.  We won’t be using fourier analysis for the first few lectures, 
but I’ll introduce the concepts today so that people who are less familiar with the topic can have 
time for review. In the first few lectures, I’ll also discuss plate tectonics.  I imagine that students 
with physics and math backgrounds may have to spend some time reviewing plate tectonics.  
Hopefully everyone will be busy the first two weeks.  Next class I’ll give a homework 
assignment involving fourier transforms.  Later we’ll have a short quiz on plate tectonics. 
 
Some applications of fourier transforms 
 
Solving linear partial differential equations (PDE’s): 
 Gravity/magnetics  Laplace ∇2Φ = 0 
 Elasticity (flexure) Biharmonic ∇4Φ = 0 
 Heat Conduction Diffusion ∇2Φ - δ Φ/ δt = 0 
 Wave Propagation Wave ∇2Φ - δ2Φ/ δt2 = 0  
 
Designing and using antennas: 
 Seismic arrays  and  streamers 
 Multibeam echo sounder and side scan sonar 
 Interferometers – VLBI – GPS  
 Synthetic Aperture Radar (SAR) and Interferometric SAR (InSAR) 
 
Image Processing and filters: 
 Transformation, representation, and encoding 
 Smoothing  and sharpening 
 Restoration, blur removal, and Wiener filter 
 
Data Processing and Analysis: 

High-pass, low-pass, and band-pass filters 
Cross correlation – transfer functions – coherence 
Signal and noise estimation – encoding time series 
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Definitions of fourier transforms 
 
The 1-dimensional fourier transform is defined as: 
 

 
where x  is distance and k  is wavenumber where k = 1/λ and λ is wavelength.  These equations 
are more commonly written in terms of time t and frequency ν where ν = 1/T and T is the period. 
The 2-dimensional fourier transform is defined as: 
 

 

where x = (x, y) is the position vector, k = (kx, ky) is the wavenumber vector, and   
(k . x) = kx x + ky y. 
 
Why use fourier transforms on a nearly spherical earth? 

If you have taken geomagnetism or global seismology, you were taught to expand a function 
of latitude and longitude in spherical harmonics.  Later in the course we will also use spherical 
harmonics to represent large-scale variations in the gravity field and to represent viscous mantle 
flow.  However, throughout the course we will be dealing with problems related to the crust and 
lithosphere.  In these cases a flat-earth approximation is both adequate and practical for the 
following reasons: 
 
A. Cartesian geometry is a good approximation.  Consider a small patch of crust or lithosphere 
on the surface of a sphere.  If the area of the patch is A is much less  
than the area of the earth and the thickness l of the patch is  
much less than the radius of the earth Re, then the  
Cartesian geometry will be adequate. 

 
A << 4π Re
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In this case the patch is nearly flat and it is also quite thin.  The area at the bottom of the patch is 
about equal to the area at the top of the patch so a 1-D approximation or a plane-stress 
approximation may be adequate when we solve the heat conduction or flexure equations, 
respectively.  Note that on a planet like Mars where the lithospheric thickness is a large fraction 
of the radius, the use of the Cartesian geometry may not be appropriate.  
 
B.  Cartesian geometry is practical. Consider the representation of a function on a spherical 
earth.  Suppose we want a spherical harmonic representation of the patch of seafloor illustrated 
below which contains  a seamount (100 km diameter).  The depth sampling must be  
better than 4 km by 4 km for adequate  representation.   
Since the circumference  of the Earth is about  
40,000 km, the maximum spherical harmonic  
degree lmax must be at least 104 and thus  
108 coefficients will be needed.  Clearly this  
will be impractical from a computational  
standpoint and, moreover, most of the  
surface will have the same depth so most  
of the coefficients do not contain useful information.  Since the seamount has a diameter of about 
100 km, we can work with a smaller patch of dimensions 400 km by 400 km.  If a fourier 
representation is used, only (400/4)2 = 104 coefficients will be needed. 
 
Fourier sine and cosine transforms 

Any function f(x) can be decomposed into odd O(x) and even E(x) components.  
  

 f(x) = E(x) + O(x) 
 

 odd part cancels  even part cancels 
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 cosine transform sine transform 

 
You have probably seen fourier cosine and sine transforms, but it is better to use the complex 
exponential form. 
 
 
Properties of fourier transforms 

The following are some important properties of fourier transforms that you should derive for 
yourself at least once.  You’ll find derivations in Bracewell.  Once you have derived and 
understand these properties, you can treat them as tools.  Very complicated problems can be 
simplified using these tools.  For example, when solving a linear partial differential equation, one 
uses the derivative property to reduce the differential equation to an algebraic equation. 
 

 

 

 

 

 
 
Note:  These properties are equally valid in 2-dimensions or even n-dimensions. The properties 
also apply to discrete data.  See Chapter 18 in Bracewell. 
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Fourier series 

Many geophysical problems are 
concerned with a small area on the  
surface of the Earth. 
 

W  -  width of area 
 

L   -  length of area 
 
The coefficients of the 2-dimensional Fourier series are computed by the following integration. 
 

 
The function is reconstructed by the following summations over the fourier coefficients. 
 

 
The finite size of the area leads to a discrete set of wavenumbers kx = m/L, ky = n/W and a 
discrete set of fourier coefficients Fn

m.  In addition to the finite size of the area, geophysical data 
commonly have a characteristic sampling interval Δx and Δy.  
 

I = L/Δx  - number of points in the x-direction 
 
J = W/Δy - number of points in the y-direction 
 

The Nyquist wavenumbers is kx  = 1/(2 Δx) and ky  = 1/(2 Δy)  so there is a finite set of fourier 
coefficients  -I/2 < m < I/2 and -J/2 < n < J/2.  Recall the trapezoidal rule of integration. 
 

 
 
The discrete forward and inverse fourier transform are: 
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The forward and inverse discrete fourier transforms are almost identical sums so one can use the 
same computer code for both operations. 
 

 
Sorry for the dual use of the symbol i.  The i in front of the 2π is 
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