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PLATE KINEMATICS
(Copyright 2001, David T. Sandwell)

(Reference - The Solid Earth, C.M.R. Fowler, Cambridge University Press, 1990,
Chapter 2)

Plate Motions on a Flat Earth
For the next few minutes we’ll discuss the relative motions among plates on a flat

earth.  Consider 2 plates A and B which have a subduction zone boundary between them.

 VAB – velocity of plate A relative to plate B.

 VBA – velocity of plate B relative to plate A.

                   A                                                   B

              Fixed                                               VBA

                   A                                                   B

                  VAB                                              Fixed

V VAB BA= −

VAB x yV V= +i j



2

Triple Junction
A triple junction is the intersection of three plate boundaries.  The most common types of
triple junctions are ridge-ridge-ridge (R-R-R), ridge-fault-fault (R-F-F), and ridge-trench-
trench (R-T-T).

Each type of plate boundary has rules about relative velocities:
i) ridge - relative velocity must be divergent and is usually perpendicular to the ridge.
ii) transform fault - relative velocity must be parallel to the fault
iii) trench - relative velocity must be convergent but no direction is preferred

All triple junctions must satisfy a velocity condition such that the vector sum around the
plate circuit is zero.

In the real world we usually can map the geometry of the spreading ridges, transform
faults and trenches but cannot always measure the relative velocities.

Example:  Galapagos Triple Junction - RRR
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Given the above geometry and one spreading velocity VAC = 120 mm/yr, what are the
other two spreading rates?

                                                                                    sum of interior angles = 180˚

  Vh = 118 mm/yr

  Vb1 = 20.8 mm/yr

  Vb2 = 10.32

One of these flat-earth triple junction closure problems will be on the quiz.  The map on
the next page shows the other triple junctions.  As an exercise, use a bathymetric map to
determine the geometry of the triple junction and use Table 2.1 (below) to calculate the
spreading rate at one of the ridges.  The next section develops the mathematics for
calculation of plate motions on a spherical earth.

cos 10
V

V
h

AC
° =

                                           VBA
                                                                                            85
                             15
                                                                                                    VCB

                                                          VAC                                   80

VBA 118.45mm/yr=

VCB = + =20 8 10 32 31 12. . . /mm yr





5

Plate Motions on a Sphere
(Minster, J-B, T.H. Jordan, Present-day plate motions,
J. Geophys. Res., v. 85, p. 5331-5354, 1978.
DeMets et al., Current plate motions, Geophys.
J. R. Astr. Soc., v. 101, p. 425-478, 1990.)

Given:

Calculate:

Of course, the velocity of the plate must be tangent to the surface of the earth so the
velocity is the cross product of the position vector and the angular velocity vector.

or

where i, j, and k are unit vectors.  The magnitude of the velocity is given by

where ∆ is the angle between the position vector and the angular velocity vector.  It is
given by the following formula.

The formulas above assume that the angular velocity vector and the position vector are
provided in Cartesian coordinates.  However, usually they are specified in terms of
latitude and longitude.  Thus one must transform both vectors.  The usual case is to
calculate the relative velocity between two plates somewhere along their common
boundary.  Table 2.1 (next page) lists the pole position and rates of rotation for relative
motion between plate pairs.  The Cartesian position of a point along the plate boundary is
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You should memorize the conversion from latitude longitude to the Cartesian co-ordinate
system where the x-axis runs from the center of the earth, to a point at 0˚ latitude and 0˚
longitude (i.e. the Greenwich meridian), the y-axis runs through a point at 0˚ latitude and
90˚ east longitude and the z-axis runs along the spin-axis to the north pole.

Similarly the pole positions must be converted from geographic co-ordinates (θp, φp)
into the Cartesian system

where |ω| is the magnitude of the rotation vector provided in Table 2.1.  There are two
ways to compute the magnitude of the velocity.  One could compute the cross product of
the rotation vector and the position vector (equation 1).  Then the magnitude of the
velocity is

A second approach is to calculate the angle ∆ between the position vector and the angular
velocity vector using equation 4 and then use that value in equation 3 to calculate the
magnitude of the velocity.  Indeed, both Fowler and Turcotte & Schubert use this second
approach.  However, they use the rather cumbersome spherical trigonometry to calculate
the angle ∆.  Since I can never remember the spherical trigonometry formulas, I prefer to
use equation 3 above after converting everything to Cartesian coordinates.

Velocity Azimuth
We know that the velocity vector is tangent to the sphere.  Given the Cartesian

velocity components from equation 2, we would like to compute the latitude vθ and
longitude vφ components of velocity.  Begin by taking the time derivative of equation 5.
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From the last equation in  (8), we can solve for the latitude velocity component.

Now plug vθ into either the vx or vy equation and solve for vφ.

If this equation turns out to be singular, then use the vx  equation.

Recipe for Computing Velocity Magnitude

In summary, to calculate the magnitude of the velocity:
i) Transform lat, lon into x = (x, y, z)  unit vector using equation 5.
ii) Transform pole lat and lon into xp  = (xp, yp, zp) unit vector
iii) cos∆ = x • xp

iv) v = ω a sin∆

Example:  Given the rotation pole between the Pacific and Nazca plates, calculate the
spreading rate at –20˚ 113.5˚W. ***One of these calculations will be on the quiz***

POLE POINT

55.6˚N 90.1˚W 1.42x10-6 deg/yr 20.0˚S 113.5˚W

55.6    269.90   2.478 x 10-8 rad/yr -20.0    246.5

xp = -0.000986 x = -0.375
yp = -0.565 y = -0.862
zp =  0.825 z = -0.342

cos∆ = x•xp = (0.000369 + .487 - .282) = .205

∆ = 78˚ v = ω a sin∆ = 154.5 mm/yr
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Triple Junctions on a Sphere

Triple junction closure on a sphere is similar to triple junction closure on a flat earth
except that the sum of the rotation vectors must be zero.

ωBA + ωCB + ωAC = 0

Example:  Galapagos Triple Junction

Given the rotation vectors of the Cosos plate relative to the Pacific plate and the Pacific
plate relative to the Nazca plate, calculate the spreading rate at 2˚N, 260˚E.

ωCP + ωNC + ωPN = 0
ωNC = -ωCP - ωPN

vNC = ω NC × r (θ, φ)

v - magnitude of spreading rate

Hot Spots and Absolute Plate Motions
So far we have only considered relative plate motions because there was no way to tie

the positions of the plates to the mantle.  One method of making this connection and thus
determining absolute plate motions is to assume that “hot spots” remain fixed with
respect to the lower mantle.
A. A hot spot is an area of concentrated volcanic activity.  There is a subset of hot spots

that have the following characteristics:
B. They produce linear volcanic chains in the interiors of the plates.
C. The youngest volcanoes occur at one end of the volcanic chain and there is a linear

increase in age away from that end.
D. The chemistry of the erupted lavas is significantly different from lava erupted at mid-

ocean ridges or island arcs.
E. Some hotspots are surrounded by a broad topographic swell about 1000 m above the

surrounding ocean basin.

These features are consistent with a model where the plates are moving over a
relatively fixed mantle plume.  After identifying the linear volcanic chains associated
with the mantle plumes, it has been shown that the relative motions among hot spots is
about 10 times less than the relative plate motions.


