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COOLING OF THE OCEANIC LITHOSPHERE AND OCEAN FLOOR 

TOPOGRAPHY 
(Copyright, 2001, David T. Sandwell) 
 

Introduction 

This lecture is the development of the lithospheric cooling problem.  For researchers in 

the areas of marine geology, marine geophysics, and geodynamics, this is the most 

important concept you can learn from this class.  As noted in the original paper on the 

topic by Turcotte and Oxburgh [1967], convection of the mantle is primarily controlled 

by thin thermal boundary layers.  The surface thermal boundary layer, or oceanic 

lithosphere is, the most important component of the convecting system because it 

represents the greatest temperature gradient in the earth and it also has a greater surface 

area than the second most important thermal boundary layer which is at the core-mantle 

boundary.  As the lithosphere cools it becomes denser, the seafloor depth increases and 

ultimately the lithosphere founders (subduction).  This subduction process both drives the 

convective flow and efficiently quenches the mantle.   

These notes cover the same material as sections 4-15 and 4-16 in Turcotte and 

Schubert [1982] (pages 153-161).  The main difference is the method of solution.  

Turcotte and Schubert solve the half-space cooling problem by guessing a similarity 

variable and then using this variable to reduce the time-dependent heat conduction 

equation from a partial differential equation to an ordinary differential equation that can 

be solved by integration.  These notes provide an alternate solution to the problem by 

using the tools of fourier analysis.  Basically, any type of heat conduction problem can be 

solved with the fourier approach [Carslaw and Jaeger, 1959].  This fourier approach is 

more than just a new way to solve an old problem.  Many 3-D heat conduction problems, 

with complicated sources and boundary conditions, do not have complete analytic 

solutions but do have solutions in the fourier transform domain.  In these cases, the FFT 

algorithms, coupled with modern computers, can be used to compute accurate results in 

seconds.  Resorting to finite difference or other numerical schemes is error prone and the 

results are more difficult to interpret since the analytic foundation is gone.  Thus the 

fourier approach is worth learning. 



 2 

The basic model is shown in the following diagram that represents one half of a 

seafloor spreading system.   The model assumptions and consequences are: 

 lithospheric plates are rigid and move away from the spreading ridge axis at a 
uniform rate of v; 

 hot, low-viscosity asthenosphere fills the void (passive); 
 internal heat generation is much smaller than the other terms in the heat equation so it 

is neglected; 
 there is a singular point at x = z = 0.  (We'll let the "ridge scientists" deal with this 

issue.) 
 

 

 

 

 

 

 

 

 

 

 

 

 

This is a 2-dimensional problem with no heat sources so the heat equation has only 

diffusive and advective terms 

 

 

where T is temperature and κ is the thermal diffusivity.  The first term represents the 

lateral diffusion of heat, the second term represents the vertical diffusion of heat, and the 

third term (on the right side) is the advection of heat by the motion of the plate.  Away 

from the ridge axis (x >> 0), one can show that the lateral heat diffusion is much smaller 

than the vertical heat diffusion.  Dropping this term simplifies the differential equation 
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although a solution can also be developed where the term is retained [ref].  Next we move 

from an Eulerian coordinate system to a Lagrangian system. 

 

 

This reduces the problem to the half-space cooling problem. 

 

 

The boundary and initial conditions are: 

 

 

The infinite half-space has constant thermal diffusivity and an initially constant 

temperature Tm.  At times greater than zero, the surface temperature is reduced to To.  The 

temperature will evolve with time. Note for this problem, time also corresponds to the 

age of the cooling oceanic lithosphere.  Define a dimentionless temperature as. 

 

 

Now the differential equation and boundary conditions become 
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Turcotte and Schubert [2002, p. 154] introduce the following dimensionless quantity and 

use this to reduce this to an ordinary differential equation with two boundary conditions.  

They then integrate the differential equation twice and match the boundary conditions. 

 

Suppose one did not know this trick or the problem was more complicated.  An approach 

called method of images is straightforward.  The model is expanded to a full-space with 

an initial step-function temperature distribution so the 0-temperature boundary condition 

is always matched.  The problem becomes 

 

where the definition of the step function is  

 

 

Now take the fourier transform of (8) with respect to z.  The differential equation 

becomes. 

 

 

The general solution is 
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Now take the fourier transform of the initial condition. 

 

 

We know that  

 

 

Also using the derivative property we know that  

 

 

Since the derivative of the step function is a delta function, the fourier transform of the 

initial condition is 

 

 

The solution that satisfies the initial condition is 

 

 

Now we take the inverse fourier transform 

 

 

The second integral on the right side of (17) is equal to 1 since the delta function extracts 

the integrand at k = 0.  The first integral on the right side of (17) is performed in two 

steps.  First take the derivative with respect to z to note that  
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This is the fourier transform of a Gaussian function.  The following substitution puts the  

integral in the form that appears in Bracewell [1978]. 

 

 

The result is 

 

 

Next integrate (20) over z.  The introduction of the similarity variable based on equation 

(20) helps to identify the integral as the definition of the error function. 

 

 

The integral becomes 

 

 

The right side of (22) is just the definition of the error function erf(η).  The final solution 
is  
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Temperature versus depth and age 
 

The thermal parameters and temperatures appropriate to the earth are given in the 
following table. 

 
 

Parameter Definition Value 
   

To surface temperature 0˚C 
Tl temp. at base of thermal 

boundary later 
1100˚C 

Tm mantle temperature 1300˚C 
κ thermal diffusivity 8 x 10-7 m2 s-1  
k thermal conductivity 3.3 W m-1 C-1 

 
If we define the base of the thermal boundary layer as some large fraction of the deep 

mantle temperature as in the table, one can calculate the thickness of the thermal 

boundary layer versus the age of the lithosphere. 

 

 
or 
 

 
The isotherms for this model are displayed on a following page. 
 
Heat flow versus depth and age 
 

The heat flow is the thermal conductivity times the temperature gradient. 
 

 
To calculate the heat flow we take the derivative of the error function with respect to z. 
 

 

Tl - To

Tm - To
= 0.84 = erf

z

2 !t

" 

# 
$ 

% 

& 
'                                                                     (24)

z ! 2 "t         or      z(km) !10 age(Ma)                                              (25)

q(z) = k
!T

!z
                                                                                             (26)

!erf (")

!z
=
!erf (")

!"

!"

!z
=

1

#$t
e
%" 2

                                                         (27)

q(z, t) =
k(Tm - To)

!"t
e

# z2

4"t                                                                            (28)



 8 

 
In the limit as depth z goes to infinity, the heat flow is zero.  So for this model, there is no 

heat transport into the base of the lithosphere.  Later we'll compute seafloor depth versus 

age for this model and show that there are large deviations at old age (i.e. > 70 Ma).  One 

way to flatten the depth versus age curve is to supply heat to the base of the lithosphere.  

There are a variety of ways to accomplish this: 

 increasing basal heat flux with age corresponds to the plate cooling model of Parsons 

and Sclater [1977].  The physical mechanism for this basal heat input is small-scale 

convective rolls beneath old lithosphere. 

 a constant basal heat flux with age corresponds to the CHABLIS cooling model of 

Fletout and Dion [1996] 

 some papers (e.g., Crough, 1983) propose that mantle plumes re-heat the old 

lithosphere and eventually all old lithosphere encounters one or more plumes so re-

heating is pervasive. 

The surface heat flow is just equation (28) evaluated at the surface of the earth. 

 

 
The match to the observed heat flow is shown on the following page.  For ages less than 

about 40 Ma, the surface heat flux is less than predicted by the model.  This heat flow 

deficit occurs because cold seawater circulates deep into the crust and advects the heat so 

the temperature gradient will be less than predicted by a purely conductive model.  At 

older ages, the heat flow is higher than expected.  This could either be due to a non-zero 

basal heat flux or an incorrect estimate of thermal conductivity of the crust. 
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Thermal Subsidence 

As the oceanic lithosphere cools by conductive heat loss, it contracts.  This thermal 

contraction causes the average density of the lithosphere to increase.  The seafloor depth 

increases with age and eventually the lithosphere becomes so dense it founders at a 

subduction zone.  To develop a linear relationship between density and temperature, 

consider a cube of volume V, mass m, and density ρ, at temperature To under a confining 

pressure Po.    

 

 

 

 

 

Changes in both temperature and pressure will produce changes in the volume of the 

cube. 
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.  We are considering the lithosphere that slides laterally across 

the surface of the earth, so there are no significant pressure variations.  Thus we need 

only the first term in (30).  If ρm is the density of the lithosphere at a temperature of Tm, 

then a reduction in temperature will cause an increase in density. 
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The diagram illustrates the thermal subsidence of the oceanic lithosphere as it spreads 

from the ridge axis at a velocity of v.  There are three layers in the model.  The ocean has 

a density of ρw and a depth of d0 at the ridge axis.  This depth increases with age/distance 

from the ridge axis.  We will use the principles of thermal contraction and isostasy to 

determine the increase in seafloor depth with increasing age d(t).  The density of the 

lithosphere depends on temperature according to equation (31).  The asthenosphere 

behaves as a fluid on geological timescales so the lithosphere floats on the mantle. 

The major assumptions are: 

 The pressure at the depth of compensation is a constant value and depends only on 

the weight of the rock and water directly above (i.e., isostatic equilibrium). 

 The crust has uniform thickness so it has no effect on the overall isostatic balance. 

 The thermal diffusivity, κ is isotropic and independent of P and T. 

 The thermal expansion coefficient α is isotropic and independent of P and T. 

 Heat is transferred by conduction so hydrothermal circulation is not important.  This 

is a poor assumption at the ridge axis. 

 Heat conducts only vertically. This is also a poor assumption at the ridge axis. 

 There are no heat sources in the crust or lithosphere. 

 No heat flows into the base of the lithosphere  See Doin and Fleitout [EPSL, 1996] 

for s discussion of alternate models with basal heat input. 
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An additional assumption is that the lithosphere is free to contract in all three dimensions.  

Since the lithosphere is thin in relation to its horizontal dimension, free contraction in the 

vertical dimension is a good assumption.  Contraction of the plate in the direction 

perpendicular to the ridge axis is probably valid as well.  However, contraction in the 

ridge-parallel direction will produce significant shear strain, which will result in 

thermoelastic stress.   We will neglect this for now but this is an interesting area of 

research. 

 

As the lithosphere cools and contracts, its vertically-integrated density increases which 

will increase the pressure at its base.  To maintain isostatic balance (i.e., constant pressure 

at constant depth zl), ocean depth must increase to replace high density rock with lower 

density water.  The increase in depth is determined by the following isostatic balance 

between a ridge-axis column and an off-axis column. 

 

 

 

 

 

 

 

The mathematical statement of isostatic balance is 
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Now we'll use the solution to the half-space cooling problem (equation 23) to define 

T(t,z).  Note this solution has temperature perturbations at infinite depth so we must 

extend the depth integration from the seafloor to infinity. 
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Now lets plug in some numbers to get an estimate of how seafloor depth varies with age. 

 

Parameter Definition Value 
   

To surface temperature 0˚C 
Tm mantle temperature 1300˚C 
κ thermal diffusivity 8 x 10-7 m2 s-1  
k thermal conductivity 3.3 W m-1 C-1 
α thermal expansion 

coefficient 
3.1 x 10-5 C-1 

ρw seawater density 1025 kg m-3 
ρm mantle density 3300 kg m-3 
do ridge axis depth 2500 m 

 

A good approximation for the depth-age relation is 

 

d = 2500m + 350 age(Ma)                                                             (38)  

 

To test this model of the cooling oceanic lithosphere we need, seafloor depth, seafloor 

age, and sediment thickness [Renkin and Sclater, JGR, 93, p.2919-2935, 1988]. 
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