SUMMARY OF BOUNDARY LAYER COOLING

Cooling and subduction of the oceanic lithosphere is the primary heat-loss mechanism for the earth. Plate tectonics and mantle flow is mostly driven by the negative buoyancy of the subducting lithosphere. This lithospheric cooling process is expressed as temperature, surface heat flow, seafloor depth, geoid height, gravitational sliding force, lithospheric thickness/strength, and lithospheric buoyancy. The simple half-space cooling model can be used to predict all of these quantities to a high level of confidence. Below is a summary of the simple analytic expressions for the quantities that we have developed in this course. It is wonderful and rare to have such a simple model explain so many observations. Many other branches of earth science are "wandering in the dark" because they lack this fundamental understanding.

Parameter	Definition	Value
		$0^{\circ} \mathrm{C}$
T_{o}	surface temperature	$750^{\circ} \mathrm{C}$
T_{e}	temp. at base of mechanical boundary layer	$1100^{\circ} \mathrm{C}$
T_{l}	temp. at base of thermal boundary later	$1300^{\circ} \mathrm{C}$
T_{m}	mantle temperature	$8 \times 10^{-7} \mathrm{~m}^{2} \mathrm{~s}^{-1}$
κ	thermal diffusivity	$3.3 \mathrm{~W} \mathrm{~m} \mathrm{~m}^{-1}$
k	thermal conductivity	$3.1 \times 10^{-5} \mathrm{C}^{-1}$
α	thermal expansion coefficient	$1025 \mathrm{~kg} \mathrm{~m}^{-3}$
ρ_{w}	seawater density	$2800 \mathrm{~kg} \mathrm{~m}^{-3}$
ρ_{c}	crustal density	$3300 \mathrm{~kg} \mathrm{~m}^{-3}$
ρ_{m}	mantle density	$2500 \mathrm{~m}^{2}$
d_{o}	ridge axis depth	$6.67 \times 10^{-11 \mathrm{~m}^{3} \mathrm{~s}^{-2} \mathrm{~kg}^{-1}}$
G	gravitational const.	$9.82 \mathrm{~m} \mathrm{~s}^{-2}$
g	acceleration of gravity	$6.5 \times 10^{10} \mathrm{~Pa}^{2}$
E	Young's modulus	0.25
v	Poisson's ratio	

Temperature

$T(z, t)=\left(T_{m}-T_{o}\right) \operatorname{erf}\left(\frac{z}{2 \sqrt{\kappa t}}\right)+T_{o}$
Mechanical boundary layer thickness
$h_{e}(t)=2 \sqrt{\kappa t} \operatorname{erfc}^{-1}\left(\frac{T_{m}-T_{e}}{T_{m}-T_{o}}\right)=5 \mathrm{~km} \sqrt{\operatorname{age}(\mathrm{Ma})}$

Thermal boundary layer thickness
$h_{l}(t)=2 \sqrt{\kappa \epsilon} \operatorname{erfc}^{-1}\left(\frac{T_{m}-T_{l}}{T_{m}-T_{o}}\right)=10 \mathrm{~km} \sqrt{\operatorname{age}(\mathrm{Ma})}$

Surface Heat Flow

$q_{s}(t)=\frac{k\left(T_{m}-T_{o}\right)}{\sqrt{\pi \kappa t}}=480 \mathrm{mWm}^{-2}[\operatorname{age}(\mathrm{Ma})]^{-1 / 2}$

Seafloor Depth
$d(t)=d_{o}+\frac{2 \alpha \rho_{m}\left(T_{m}-T_{o}\right)}{\left(\rho_{m}-\rho_{w}\right)} \sqrt{\frac{\kappa t}{\pi}}=2500+350 \mathrm{~m} \sqrt{\operatorname{age}(\mathrm{Ma})}$

Geoid Height
$N(t)=-\frac{2 \pi G \alpha \rho_{m}\left(T_{m}-T_{o}\right) \kappa}{g}\left\{1+\frac{2 \alpha \rho_{m}\left(T_{m}-T_{o}\right)}{\pi\left(\rho_{m}-\rho_{w}\right)}\right\} t=-0.15 \mathrm{mage}(\mathrm{Ma})$

Gravitational Sliding Force

$$
\begin{align*}
& F_{R}=\frac{-g^{2}}{2 \pi G} N \tag{7}\\
& F_{R}=g \alpha \rho_{m}\left(T_{m}-T_{o}\right) \kappa\left\{1+\frac{2 \alpha \rho_{m}\left(T_{m}-T_{o}\right)}{\pi\left(\rho_{m}-\rho_{w}\right)}\right\} t
\end{align*}
$$

Flexural Rigidity

$$
\begin{equation*}
D(t)=\frac{E h_{e}^{3}}{12\left(1-v^{2}\right)}=\frac{2 E}{3\left(1-v^{2}\right)}\left\{\operatorname{erfc}^{-1}\left(\frac{T_{m}-T_{e}}{T_{m}-T_{o}}\right)\right\}^{3}(\kappa t)^{3 / 2} \tag{8}
\end{equation*}
$$

Buoyancy

$$
\begin{equation*}
\delta(t)=\int_{o}^{\infty} \frac{\rho_{m}-\rho(z)}{\rho_{m}} d z=\delta_{\text {comp. }}+\delta_{\text {thermal }}=1.3 \mathrm{~km}-2 \alpha\left(T_{m}-T_{o}\right)\left(\frac{\kappa t}{\pi}\right)^{1 / 2} \tag{9}
\end{equation*}
$$

LITHOSPHERIC BUOYANCY
 (Oxburgh \& Parmentier, 1977)

$$
\delta=\int_{0}^{\infty}\left[\frac{\rho_{m}-\rho(z)}{\rho_{m}}\right] d z
$$

$\rho(z)-\quad$ lithospheric density
$\rho_{m} \quad-\quad u n d e p l e t e d$ mantle density
$\boldsymbol{\delta} \quad-\quad$ density defect thickness
>0 stable
<0 unstable

$$
\begin{aligned}
& \delta_{\text {total }}=\delta_{\text {comp }}+\delta_{\text {thermal }} \\
& \delta_{\text {comp }}=\text { light crust }+ \text { depleted mantle (assumes spreading) } \\
& \delta_{\text {thermal }}=-2 \alpha\left(T_{m}-T_{0}\right) \sqrt{\frac{\kappa t}{\pi}}
\end{aligned}
$$

Earth

$\delta_{\text {comp }}$	1.3 km	$?$
T_{∞}	$0^{\circ} \mathrm{C}$	$455^{\circ} \mathrm{C}$
T_{m}	$1200^{\circ} \mathrm{C}$	$1400^{\circ} \mathrm{C}$
α	$3.1 \times 10^{-5} \mathrm{C}^{-1}$	$3.1 \times 10^{-5} \mathrm{C}^{-1}$
κ	$8.0 \times 10^{-7} \mathrm{~m}^{2} \mathrm{~s}^{-1}$	$8.0 \times 10^{-7} \mathrm{~m}^{2} \mathrm{~s}^{-1}$

