CHAPTER 2

Stress and Strain

ny quantitative description of seismic wave propagation requires the ability
to characterize the internal forces and deformations in solid materials. We
now begin a brief review of those parts of stress and strain theory that
will be needed in subsequent chapters. Although this section is intended to be
self-contained, we will not derive many equations and the reader is referred to
any continuum mechanics text (e.g., Malvern, 1969) for further details.

Deformations in three-dimensional materials are termed strain; internal forces
between different parts of the medium are called stress. Stress and strain do
not exist independently in materials; they are linked through the constitutive
relationships that describe the nature of elastic solids.

2.1 The Stress Tensor

Consider an infinitesimal plane of arbitrary orientation within a homogenous
elastic medium in static equilibrium. The orientation of the
i plane may be specified by its unit normal vector, fi. The force per
unit area exerted by the side in the direction of fiacross this plane
is termed the traction and is represented by the vector t(h) =
(t,, 1y, t-). There is an equal and opposite force exerted by the
side opposing fi, such that t(—fi) = —t(fi). The part of t that is
normal to the plane is termed the normal stress; that parallel to itis called the shear
stress. Inthe case of a fluid, there are no shear stresses and t = — Ph, where P is the
pressure.
The stress tensor, T, in a Cartesian coordinate system (Fig. 2.1) may be defined'
by the tractions across the yz, xz, and xy planes:

LX) 1, ()A’) 1(2) Tov Ty s
T = t_\'(ﬁ) Iy ()A’) tr\'(i) = Ty Ty Tyz |- (2.1
,:(ﬁ) f:(f’) [:(i) Toyr Ty T

I Often the stress tensor is defined as the transpose of (2.1) so that the first subscript of 7 represents the
surface normal direction. In practice, it makes no difference as 7 is symmetric.
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t(z) .
ty)

D Fig. 2.1. The traction vectors t(%X), t(§), and t(Z) de-
f scribe the forces on the faces of an infinitesimal cube
in a Cartesian coordinate system.

t(x)

Because the solid is in static equilibrium, there can be no net rotation from the
shear stresses. For example, consider the shear stresses in

the xz plane. To balance the torques, 7., = 7.,. Similarly, >
Ty = Ty, and T,; = 7., and the stress tensor 7 is symmet- 4 TT;\A
ric, that is, T:_)
T'\'i X
T\ X T‘(\ T)n Z 4—;_
t=t =|1, T, T:|. (2.2)

The stress tensor T contains only six independent elements, and these are sufficient
to completely describe the state of stress at a given point in the medium.

The traction across any arbitrary plane of orientation defined by fi may be
obtained by multiplying the stress tensor by #, that is,

Iy (ﬁ) Tev Toy Tag 7 v
t(ﬁ) =Th = l‘v\-(ﬁ) =| T Ty Ty fl}. (2.3)
t-(f) T Ty Ty il

This can be shown by summing the forces on the surfaces of a tetrahedron (the
Cauchy tetrahedron) bounded by the plane normal to fi and the xy, xz, and yz
planes.

The stress tensor is simply the linear operator that produces the traction vector
t from the normal vector fi, and, in this sense, the stress tensor exists indepen-

“dent of any particular coordinate system. In seismology we almost always write

the stress tensor as a 3 x 3 matrix in a Cartesian geometry. Note that the sym-
metry requirement reduces the number of independent parameters in the stress
tensor to six from the nine that are present in the most general form of a second-
order tensor (scalars are considered zeroth-order tensors, vectors are first order,
etc.).

The stress tensor will normally vary with position in a material; it is a measure
of the forces acting on infinitesimal planes at each point in the solid. Stress
provides a measure only of the forces exerted across these planes and has units
of force per unit area. However, other forces may be present (e.g., gravity); these
are termed body forces and have units of force per unit volume or mass.

For any stress tensor, it is always possible to find a direction fi such that there
are no shear stresses across the plane normal to fi, that is, t(fi) is in the i direction.
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In this case

t() = Ah =71,
Th—An=0, 2.4)
(t — I =0,

where I is the identity matrix and X is a scalar. This is an eigenvalue problem that
has a nontrivial solution only when

det[t —IA] = 0. (2.5)

This is a cubic equation with three solutions, the eigenvalues A, A2, and A3 (do
not confuse these with the Lamé parameter A that we will discuss later). Since T
is symmetric and real, the eigenvalues are real. Corresponding to the eigenvalues
are the eigenvectors "), A, and A®. The eigenvectors are orthogonal and define
the principal axes of stress. The planes perpendicular to these axes are termed
the principal planes. We can rotate T into the A", A%, AY coordinate system by
applying a similarity transformation:

T 0 0
tR=NTtN=|0 ©» 0|, (2.6)
0 0 3

where T is the rotated stress tensor and 7, 7,, and 73 are the principal stresses
(identical to the eigenvalues A, A,, and 13). Here N is the matrix of eigenvectors

(1) (2) (3)
n, ny n,
Q)] 2) (3)
N = n v n ¥ n,\‘ s (27)
2
nh p@

with N7 = N~! for orthogonal eigenvectors normalized to unit length.

If 7, = 1, = 13, then the stress field is called hydrostatic and there are no
planes of any orientation in which shear stress exists. In a fluid the stress tensor
can be written

-P 0 0
t=| 0 —-P O |, (2.8)
0 0 -—P

where P is the pressure.

2.1.1 Values for Stress
Stress has units of force per unit area. In SI units

Y

1 pascal (Pa) =1 Nm™.
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Table 2.1. Pressure Versus Depth Inside Earth

Depth (km) Region Pressure (GPa)
0-24 Crust 0-0.6
24-400 Upper Mantle 0.6-13.4
400-670 Transition Zone 13.4-23.8
670-2891 Lower Mantle 23.8-135.8
2891-5150 Outer Core 135.8-328.9
5150-6371 Inner Core 328.9-363.9

Recall that 1 newton (N) = 1 kg ms~2 = 10° dyne. Another commonly used unit
for stress is the bar:

1 bar = 10° Pa,
1 kbar = 10® Pa = 100 MPa,
1 Mbar = 10"' Pa = 100 GPa.

Pressure increases rapidly with depth in Earth, as shown in Table 2.1 using
values taken from the reference model PREM (Dziewonski and Anderson, 1981).
Pressures reach 13.4 GPa at 400 km depth, 136 GPa at the core-mantle boundary,
and 329 GPa at the inner-core boundary. In contrast, the pressure at the center
of the Moon is only about 4.8 GPa, a value reached in Earth at 150 km depth
(Latham et al., 1969). This is a result of the much smaller mass of the Moon.

These are the hydrostatic pressures inside Earth; shear stresses at depth are
much smaller in magnitude and include stresses associated with mantle convection
and the dynamic stresses caused by seismic wave propagation. Static shear stresses
can be maintained in the upper, brittle part of the crust. Measuring shear stress
in the crust is a topic of current research and the magnitude of the stress is a
subject of some controversy. Crustal shear stress is probably between about 100
and 1,000 bars (10 to 100 MPa), with a tendency for lower stresses to occur close
to active faults (which act to relieve the stress).

The Strain Tensor

Now let us consider how to describe changes in the positions of points within a
continuum. The location of every point relative to its position at a reference time
to can be expressed as a vector field, that is, the displacement field u is given by

u(rg) =r — Iy, (2.9)

where r is the current position of the point and ry is the reference location of the
point. The displacement field is an important concept and we will refer to it often
in this book. It is an absolute measure of position changes. In contrast, strain is
a local measure of relative changes in the displacement field, that is, the spatial
gradients in the displacement field. Strain is related to the deformation, or change
in shape, of a material rather than any absolute change in position. For example,
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extensional strain is defined as the change in length with respect to length. If a
100 m long string is fixed at one end and uniformly stretched to a length of 101 m,
then the displacement field varies from O to 1 m along the string, whereas the
strain field is constant at 0.01 (1%) everywhere in the string.

Consider the displacement w = (u,, u,, u-) at position x, a small distance
away from a reference position xo. We can expand u in a Taylor series to obtain

RITH BITR A,

U, ax oy oc d,
duy  duy ou,
ux) = | u, | =u(xp) + % % % dy | =u(xp)+Jd, (2.10)
u: dus o dug d-
) ax ay az

where d = x — x¢. We have ignored higher order terms in the expansion by
assuming that the partials, du,/dx, du,/dx, etc., are small enough that their
products can be ignored (the basis for infinitesimal strain theory). Seismology
is fortunate that actual Earth strains are almost always small enough that this
approximation is valid. We can separate out rigid rotations by dividing J into
symmetric and antisymmetric parts:
gy oy ot
J=| 2 o Il —etQ (2.11)

dx ay 9z

du - du -

du-

ox oy oz
where the strain tensor, e, is symmetric (¢;; = e;;) and is given by

RITI

(w4 Ouy (2w dug
ox 2( av + dx 2\ oz + ax

— | L{3u 4 duc duy Lfduy 4 ou
€= 2 ( dx + ay ) ay 2 ( az + ay ) ’ (2 I 2)
1 ( ou- ou, 1 ou- duty du.
2 ( LAY + az ) 2 ( ay + Jz ) a3z
and the rotation tensor, &, is antisymmetric (£2;; = —£2;;) and is given by
L Quy _ Ouy Lfou, _ du
0 2 ( Jdy ox ) 2 ( 0z BAY )

The reader should verify thate + Q = J.

The effect of e and  may be illustrated by considering what happens to an
infinitesimal cube (Fig. 2.2). The off-diagonal elements of e cause shear strain;
for example, in two-dimensions, if & = 0 and there is no volume change, then
ou,/dx = du,/dz =0, du,/dz = du./dx, and

0 6 0 I

ax
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duy oy

0z z

6 6

/ % ﬁu:
x -
[ ox
0 ouz
ox

Fig. 2.2. The different effects of the strain tensor e and the rotation tensor £ are
illustrated by the deformation of a square in the x—z plane. The off-diagonal compo-
nents of e cause shear deformation (left square), whereas Q causes rigid rotation (right
square). The deformations shown here are highly exaggerated compared to those for
which infinitesimal strain theory is valid.

where @ is the angle (in radians, not degrees!) through which each side rotates.
Note that the total change in angle between the sides is 26. In contrast, the €2

matrix causes rigid rotation, for example, if e = 0, then du, /0z = —ou./dx and
0 6 0 o
= = = L 1
1=9 [—0 0] [% 0] 219

In both of these cases there is no volume change in the material. The relative
volume increase, or dilatation, A = (V — Vy)/ Vo, is given by the sum of the
extensions in the x, y, and z directions:

ou, ou, ou-
ax + ay + 0z rlel " ( )

where tr[e] = e, + €2, + e33, the trace of e. Note that the dilatation is given by
the divergence of the displacement field.

What about the curl of the displacement field? Recall the definition of the curl
of a vector field:

ou.  du, ou, Ju, ou, Jduy,\ .
Vxu=[—-—|X - ——¥ — = VA 2.17
(ay 82>X+<8z 8x>y+<8x ay> (17)

A comparison of this equation with (2.13) shows that V x u is nonzero only if Q
is nonzero and the displacement field contains some rigid rotation.

The strain tensor, like the stress tensor, is symmetric and contains six inde-
pendent parameters. The principal axes of strain may be found by computing the
directions fi for which the displacements are in the same direction, that is,

u = Al = ef. (2.18)

This is analogous to the case of the stress tensor discussed in the previous sec-
tion. The three eigenvalues are the principal strains, ey, e;, and e3, while the
eigenvectors define the principal axes. Note that, except inthe case e; = e; = €3
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Fig. 2.3. Simple extensional strain in the x direc-
tion results in shear strain; internal angles are not
preserved.

(hydrostatic strain), there is always some shear strain present. For example, con-
sider a two-dimensional square with extension only in the x direction (Fig. 2.3),

so that e is given by
e 0] _[% 0
[ 0[5 ] o

Angles between lines parallel to the coordinate axes do not change, but lines at
intermediate angles are seen to rotate. The angle changes associated with shearing
would become obvious if the coordinate system were rotated by 45 degrees (in
which case e would have off-diagonal terms).

In subsequent sections, we will find it helpful to express the strain tensor using
index notation. Equation (2.12) can be rewritten as

ejj = %(a,'blj + 8jl/l,‘), (220)

where i and j are assumed to range from 1 to 3 (for the x, y, and z directions)
and we are using the notation d,u, = du,/0dx.

2.2.1 Values for Strain

Strain is dimensionless since it represents a change in length divided by length.
Dynamic strains associated with the passage of seismic waves in the far field are
typically less than 107°.

The Linear Stress-Strain Relationship

Stress and strain are linked in elastic media by a stress—strain or constitutive
relationship. The most general linear relationship between the stress and strain
tensors can be written

Tij = Cijki€kl = Z Z Cijki€kis (2.21)

k=13 [=13

where ¢;jy is termed the elastic tensor. Here we begin using the summation
convention in our index notation. Any repeated index in a product indicates that
the sum is to be taken as the index varies from 1 to 3. Equation (2.21) assumes
perfect elasticity; there is no energy loss or attenuation as the material deforms in
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response to the applied stress (sometimes these effects are modeled by permitting
¢;jx to be complex). We will not consider anelastic behavior and attenuation until
Chapter 6.

The elastic tensor, ¢;jx, is a fourth-order tensor with 81 (3*) components.
However, because of the symmetry of the stress and strain tensors and thermo-
dynamic considerations, only 21 of these components are independent. These
21 components are necessary to specify the stress—strain relationship for the
most general form of elastic solid. The properties of such a solid may vary with
direction; if they do, the material is termed anisotropic. In contrast, the properties
of an isotropic solid are the same in all directions. Isotropy has proven to be a
reasonable first-order approximation for much of the Earth’s interior, but in some
regions anisotropy has been observed and this is an important area of current
research (see Section 11.3 for more about anisotropy).

If we assume isotropy (c;j is invariant with respect to rotation), it can be
shown that the number of independent parameters is reduced to two:

Cijkt = A0Sk + m(8isdjk + 6ixdji)s (2.22)

where A and p are called the Lamé parameters of the material and §;; is the
Kronecker delta (8;; = 1 fori = j, §; = 0fori # j). As we shall see, the
Lamé parameters, together with the density, will eventually determine the seismic
velocities of the material. The stress—strain equation (2.21) for an isotropic solid is

Tij = [A8;0k + (818 jk + dikdj)len
= )LSi‘,-ekk + 2//,6,'_/'. (223)

where we have used ¢;; = ¢;; to combine the 1 terms. Note that ey, = trle], the
sum of the diagonal elements of e. Using this equation, we can directly write the
components of the stress tensor in terms of the strains:

atrfe] + 2uey 2uen 2uers
T = 2pes rtrle] + 2uern 2ueas . (2.24)
2ues 2uesr rtrle] + 2uess

The two Lamé parameters completely describe the linear stress—strain relation
within an isotropic solid. i is termed the shear modulus and is a measure of the
resistance of the material to shearing. Its value is given by half of the ratio be-
tween the applied shear stress and the resulting shear strain, thatis, u = 7,,/2e,,.
The other Lamé parameter, A, does not have a simple physical explanation. Other
commonly used elastic constants for isotropic solids include:

Young’s modulus E: The ratio of extensional stress to the resulting extensional
strain for a cylinder being pulled on both ends. It can be shown that

_Ga+ 21

‘ 2.25)
A+ w) (
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Bulk modulus «: The ratio of hydrostatic pressure to the resulting volume
change, a measure of the incompressibility of the material. It can be expressed
as

K =i+ 2u. (2.26)
Poisson’s ratio o: The ratio of the lateral contraction of a cylinder (being
pulled on its ends) to its longitudinal extension. It can be expressed as

A

6 = ———. (2.27)
2(h + )

In seismology, we are mostly concerned with the compressional (P) and shear
(S) velocities. As we will show later, these can be computed from the elastic
constants and the density, p:

P velocity, a, can be expressed as

Wt 2
I (2.28)
Voo .

S velocity, B, can be expressed as

g= |1 (2.29)

0

Poisson’s ratio o is often used as a measure of the relative size of the P and S
velocities; it can be shown that

a’ —2p?
2e = p7)
Note that o is dimensionless and varies between 0 and 0.5 with the upper limit

representing a fluid (1« = 0). For a Poisson solid, » = pu,0 = 0.25, and o/ =
/3. Most crustal rocks have Poisson’s ratios between 0.25 and 0.30.

(2.30)

g =

2.3.1 Units for Elastic Moduli
The Lamé parameters, Young’s modulus, and the bulk modulus all have the same
units as stress (i.e., pascals). Recall that

IPa=1Nm > =1kgm's™’

Note that when this is divided by density (kg m~?) the result is units of velocity
squared (appropriate for Equations 2.28 and 2.29).

EXERCISES

21 Using Equations (2.4), (2.18), and (2.24), show that the principal stress axes
always coincide with the principal strain axes for isotropic media.
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