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FLEXURE OF THE LITHOSPHERE 
(Copyright 2001, David T. Sandwell)  
(Reference: Turcotte and Schubert, Chapter 3) 
 

These lecture notes are basically a supplement to Turcotte and Schubert, Chapter 3.  
The results of the first derivation are the same as equation 3-130 in T&S but rather than 
guessing the general solution, the solution is developed using fourier transforms.  The 
approach is similar to the solutions of the marine magnetic anomaly problem, the 
lithospheric heat conduction problem, the strike-slip fault flexure problem and the flat-
earth gravity problem.  In all these cases, we use the Cauchy integral theorem to perform 
the inverse fourier transform.  Later we'll combine this flexure solution with the gravity 
solution to develop the gravity-to-topography transfer function. Moreover, one can take 
this approach further to develop a Green's function relating temperature, heat flow, 
topography and gravity to a point heat source (e.g., Sandwell, Thermal Isostasy: response 
of a Moving Lithosphere to a Distributed Heat Source, J. Geophys. Res., .v 87, p. 1001-
1014, 1982).   In addition to the constant flexural rigidity solution found in the literature, 
we develop an iterative solution to flexure with spatially-variable rigidity. 

 Before going over these notes, please re-read section 3-9 in Turcotte and Schubert on 
the development of moment versus curvature for a thin elastic plate. 
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The loading problem is illustrated above.  We start with a simple line source, but the 
solution method also applies to a point source. Of course, the point source Green's 
function can be convolved with an arbitrary load distribution to make the solution 
completely general; we'll do this later.  The vertical force balance for flexure of a thin 
elastic plate floating on the mantle is described by the following differential 
 

 flexural + end + restoring = vertical 
 resistance load force load 

 
 
 

Parameter Definition Value/Unit 
w(x) deflection of plate 

(positive down) 
m 

D(x) flexural rigidity N m 
h elastic plate thickness m 
F end load N m-1 
q vertical load N m-2 
Δρ density contrast 

(ρm - ρw) 
 

g acceleration of gravity 9.82 m s-2 
E Young's modulus 6.5 x 1010 Pa 
ν Poisson's ratio 0.25 

 
 

Case 1. Constant flexural rigidity, line load, no end load 
 
Under these assumptions, the differential equation and boundary conditions become 
 

 
Take the fourier transform of the differential equation where the forward and inverse 
transforms are defined as 
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where the wavenumber is now 2π/λ instead of the usual 1/λ.  I have switched notation 
because it saves writing 2π many times and also these are old notes.  The derivative 
property is now ℑ[dw/dx] = ik ℑ[w].   The fourier transform of the differential equation is 
 

 
and the solution for plate deflection is simply 
 

 
where the flexural parameter α is (see Turcotte and Schubert, equation (3-127)). 
 

 
Now take the inverse fourier transform of equation (6). 

 

 
As in the other solutions, we find the poles in the denominator of (7) and integrate around 
the poles. 
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First consider the case for x > 0.  To match the boundary conditions at infinity we want 

Im(k) > 0.  Thus we close the integration in the upper half of the plane and apply the 
Cauchy Residue Theorem 

 

 
The relevant poles are 
 

 
The solution is 
 

 
After some simplification this becomes 
 

 
This can be re-written in terms of cos(x/α) and sin(x/α).  Also we know that the solution 
should be symmetric about x = 0.  The final result for positive x matches equation (3-130) 
in Turcotte and Schubert.   

 

 
The important parameters and length scales in this solution are 
 
α  flexural parameter 
2πα  flexural wavelength 
xo = 3 πα /4 distance to the first zero crossing. 
 
The figures on the following page from Turcotte and Schubert display the solution for the 
continuous plate where the maximum flexure is normalized to 1.   In addition the solution 
for a broken plate is shown. This is also the same form used to model plate bending at a 
subduction zone.  Note for the same downward force, the amplitude of the broken plate is 
2 times the amplitude of the continuous plate 
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Case 2. Variable flexural rigidity, arbitrary line load, no end load 
 

For this case we need to solve a linear differential equation but with variabile 
coefficient.  This will involve an iteration scheme in the fourier transform domain where 
the first iteration is basically equation (5) above.  See the original derivation in Sandwell 
[1984] (Thermomechaical Evolution of Oceanic Fracture Zones, J. Geophys. Res., v. 89, 
p. 11401-11413, 1984.)  The differential equation and boundary conditions are 

 

 
where D(x) is now the spatially variable flexural rigidity, w(x) is the deflection of the 
plate and P(x) is the applied load.  It is assumed that D, w, and P are band-limited 
functions so their fourier transforms exist.  The functions D and w can be written as 
 

 
Upon substitution of these expressions for D and w into the first term of equation (14) 
and differentiating under the integral, the following is obtained 
 

  
The fourier transform of (16) is 
 

  
 
By making use of the definition of the delta function, 
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and performing the integral with respect to r, and using the band-limited property of D(s) 
(i.e., D(s) = 0 |s| > β) , equation (17) reduces to a Fredholm integral equation 
 
 

 
Notice that when the flexural rigidity is constant D(x) = Do then D(s) = 2π Doδ(s).  For 
this case, the solution for the plate deflection for an arbitrary load is  
 

 
 
Now consider the more general case of spatially variable flexural rigidity 
 

 
Inserting equation (21) into equation (19) and rearranging terms yields 
 

 
The plate deflection appears on both sides of equation (22) so there is no closed form 
solution for W(k).  However, if the variations in flexural rigidity D' are small compared 
with the mean value of flexural rigidity Do, then this equation can be solved by 
successive approximation.  The original derivation in Sandwell [1984] provides the 
necessary requirement for convergence but a numerical illustration is also useful. 
 
The figure below is a numerical example of flexure of a plate with a sharp reduction in 
plate thickness at the origin.  The upper curve compares the flexure of a continuous plate, 
(continuous curve - analytic solution, equation 13) to the Fourier transform solution to 
equation 2 (dashed curve).  The lower plot is a comparison of the analytic solution to 
flexure of a broken plate (continuous curve - T&S, equation 3-140) to the numerical 
iterative solution of equation (22) (dashed curve).  For this case the thickness of the plate 
at the origin was reduced by 95%. This approximates the broken plate solution. 
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