HOMEWORK 1 - due Monday, October 8

1) Complete the following table.

parameter	symbol	units	typical value and quantity
temperature	T	°C or °K	100 °C is the boiling point of
_			water at 1 atm. of pressure
thermal			
conductivity			
density			
coefficient of			
thermal			
expansion			
(volumetric)			
acceleration of			
gravity			
gravitational			
constant			
Young's			
modulus			
Poisson's ratio			
viscosity,			
dynamic			

2) Devise a thought experiment to measure each quantity. This has to be physically realistic but not necessarily practical.

Example temperature - One could use a thermometer to measure temperature but that depends on knowing the coefficient of thermal expansion. One could use the definitions of the freezing/boiling point of water to define temperatures of 0° C and 100° C. One could use the Stefan-Boltzmann law to measure temperature by measuring radiation L from a black body at temperature T.

$$L = \sigma T^4$$

where σ is the Stefan Boltzmann constant (5.67 x 10⁻⁸ W m⁻² °K⁻⁴).