Relative Sea Level

ARSL = AOSL + AGIA+ AVCM

AVCM
- largest probable signals on 100-year timescale
- areas of large AVCM
- California AVCM = earthquake cycle + crustal fluids

- Many coastal cities have large VCM

RSL - relative sea level

OSL - ocean sea level

GIA - glacial isostatic adjustment
VCM - vertical crustal motion




vertical surface deformation
from glacial isostatic
adjustment
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Relative Sea Level Rise, MM/Yr
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20th Century Relative Sea Level Trends in Europe
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vertical crustal motion
from earthquakes




Great Sumatra Earthquake, 2004
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Great Sumatra Earthquake, 2004

Island
Gradually
Sinking
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Coral grows up to low tide level.

Once at low tide level, coral can
only grow sideways.

When the islands sink, coral continues
to grow upward.

When the islands pop-up during an earthquake,
the upper part of coral dies, but the lower part that
is still under low tide level continues to grow.

Sieh et al., Science, 2008
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Fig. 2. Histories of interseismic submergence and coseismic emergence through seven centuries at
sites (A) Bulasat, (B) Simanganya, and (C) Sikici. Data constrain solid parts of the curves well (fig.
S4); dotted portions are inferred. Emergence values (in centimeters + 2¢) are red. Interseismic
submergence rates (in millimeters per year, + 20) are blue. Millennial emergence rates are black.
Vertical dashed white lines mark dates of emergences. Red arrows at bottom highlight the timing
of the failure sequence for each supercycle.
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California Earthquakes

Historical earthquake sequence

1800 1850 1900 1950 2004

[Smith & Sandwell, JGR 2006]




Vertical motion 4
due to San Andreas
Fault, earthquake
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vertical surface deformation
from withdrawal of crustal
fluids - water and oll
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(Watson et al., JGR 2001)
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PLATE 1

Approximate horizontal scale



S
/p)
®

m

<

-

E=
p -
)
o
®
=

O
-
-
O
p -

O

(w) 3sM pue (ww) yusuodwod dn sdv

<

()]

1 | | | 1 | | [+)}

3
o o o o o o o o
wn o wn o Ty o wn o
wn wn <t < [¢p] (¢ ] (aV] (8V]

(ww) 4od1

Figure 3

(Watson et al., JGR 2001)
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Historic Houston Subsidence
1906 - 1978

Data Source: National Geodetic Survey
Contour Interpretations: HGCSD

Houston
Ship Channel

Flgure 3. Subsidence cccuring between 1905 and 1978 in the Houston-Galvesten region, Texas
Map courlesy of Houslon-Galveston Coaslal Subsidence District

By 1979, the Houston Ship Channel area had subsided as much as 10 feet and over 3200 square miles of the
Houston metropolitan area had sunk an average of one foot (Galloway et al, 1999). Most of Houston's subsidence
is due to compaction of subsurface clays because of withdrawal of ground water from surrounding aquifer beds

(Zilkoski et al, 2001).

maximum subsidence rate = 40 mm/yr

Berman, 2005




The first documented instance of land subsidence due to fluid withdrawal was from the Goose Creek oil field near
the city of Houston. In 1917 oil was discovered on the margin of Galveston Bay near the mouth of the present-day
Houston Ship Channel. After production of several million barrels of oil, bay waters began to inundate the oil field.

(Figure 1). Pratt and Johnson (1926) recognized newly formed faults and fissures that resulted from fluid
withdrawal (Figure 2).
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Figure 1. Measured subsidence between 1918 and 1926 around Goose Creek oilfield. Lines of equal

subsidence (feet) for an 8-year period are shown in gray lines—for a 1-year period, in black lines
Modified from Galloway et al, 1999.

maximum subsidence rate = 100 mm/yr

Berman, 2005




Subsiding Cities

Nelson 2009

The table below shows a list of cities throughout the world that have been experiencing
subsidence problems. Note that most of these cities are coastal cities like London, Houston, and
Venice, or are built on river flood plains and deltas, like New Orleans, Baton Rouge, and the San
Joaquin Valley of central California. Mexico City is somewhat different in that it was builtin a
former lake.

City Maximum

| Subsidence (m) | |
LongBeach/Los Angeles , 9.00 | 50 [Petroleum withdrawl
San Joaquin Valley, CA | 8.80 | 13,500 |Groundwater withdrawal
Mexico City | 8.50 | 225 [filled lake

Tokyo, Japan | 4.50 | 3,000 | coastal sediments

San Jose, CA | 3.90 | 800 Abay sediments

Osaka, Japan | 3.00 | 500 | coastal sediments
Houston, TX | 2.70 | |coastal sediments
Shanghai, China | 2.63 | |coastal sediments
Niigata, Japan | 2.50 | |coastal sediments
Nagoya, Japan | 2.37 | |coastal sediments

New Orleans, LA | 2.00 | Arivcr sediments

Taipei, China | 1.90 | |coastal sediments
Bankok, Thailand A 1.00 | [river sediments

Venice, Italy | | | coastal sediments
London, England | | | river sediments

Area (km?) Cause




Vertical Crustal Motions can dominate RSL

Earthquakes
Sumatra subduction - 1000 mm

California strike-slip - 200 mm

Interseismic
Sumatra - 10 mm/yr
California - 1.5 mm/yr

Groundwater
LA - secular - 3 mm/yr (Long Beach)
LA - annual - 10-30 mm/yr
Houston - secular - 40 mm/yr
New Orleans - secular - 8 mm/yr

Houston (1920s) - 100 mm/yr




