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Abstract 
 

Improving the accuracy of the marine gravity field requires both increased altimeter 

range precision and dense track coverage.  After a hiatus of more than 15 years, a wealth 

of suitable data is now available from the satellites CryoSat, Envisat, and Jason-1. In 

particular, Cryosat has a new synthetic aperture radar (SAR) mode that provides a more 

complex waveform shape that should result in higher range precision. For this new mode 

we derived a simple analytic model for the shape of the SAR waveform and tuned the 

least-squares retracking approach to achieve optimal range precision.  As for the 

conventional modes on all these satellites, the range precision of data from these can be 

significantly improved with respect to the conventional techniques used in operational 

oceanography by retracking the altimeter waveforms using an algorithm that is optimized 

for range precision at the expense of other parameters such as significant wave height. 

We have demonstrated that a two-pass retracking algorithm that was originally designed 

for data from prior missions (ERS-1 and Geosat) also improves precision on all three of 

the new satellites by about a factor of 1.5.  The improved range precision and dense 

coverage from CryoSat, Envisat, and Jason-1 combined with data from ERS-1 and 

Geosat will to lead to a substantial increase in the accuracy of the marine gravity field. 

 
Introduction 

Marine gravity anomalies derived from radar altimeter measurements of ocean surface 

slope are the primary data for investigating global tectonics and seafloor bathymetry.  At 

horizontal scales less than 200 km, the ocean surface undulates following the topography 

of the seafloor, and thus altimetry provides seafloor maps in uncharted areas.  While there 

have been several recent global gravity missions such as CHAMP, GRACE, and GOCE 

that provide extraordinarily accurate measurements of gravity, their spatial resolution is 
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worse than 200 km because they sense the gravity field from orbital altitudes.  Radar 

altimeters sense the gravity field at the ocean surface so they can recover spatial scales as 

small as ~6 km, which is the limit provided by upward continuation of the gravity field at 

seafloor depths through the overlying ocean layer.  The scientific rationale for improved 

gravity is fairly mature and a set of papers related to this topic was published in a special 

issue of Oceanography [Smith, 2004], entitled Bathymetry from Space.  These studies 

show that achieving an accuracy of 1 milligal (mGal) at a horizontal resolution of 6 km 

would enable major advances for a large number of basic science and practical 

applications.  

For recovery of the static marine gravity field, the critical measurement is the slope of 

the ocean surface.  Laplace's equation combined with Bruns’ formula shows that one 

microradian (µrad) of ocean surface slope roughly corresponds to 1 mGal of gravity 

anomaly. Therefore, achieving this 1 µrad threshold requires a radar altimeter range 

having a precision of 6 mm over 6 km horizontal distance. This precision could be 

derived from a single profile or a stack of repeated profiles.  Ocean surface slope can be 

estimated by differencing height measurements along satellite altimeter profiles so 

absolute range accuracy is largely irrelevant.  Indeed the usual corrections and ancillary 

data that are needed to recover the temporal variations in ocean surface height associated 

with currents and eddies are largely unimportant for the recovery of the gravity field 

because the slope of these corrections is far less than the slope error in the radar altitude 

measurement. 

In addition to high range precision, the accuracy of the global marine gravity field 

depends on dense track spacing, which needs to be less than the desired resolution of 6 

km.  Current gravity fields having accuracies of 3-5 mGal (e.g., S&S V18 [Sandwell and 

Smith, 2009] and DNSC08 [Andersen et al., 2009]) are based primarily on dense track 

coverage from 18 months of Geosat/GM data collected in 1985-86 and 12 months of 

ERS-1/GM collected in 1995-96.  Since those missions there have been several advances 

in radar altimeter technology, but all the newer satellites have been placed in a repeat 

orbit configuration having wide track spacing.  This wide track spacing configuration (i.e. 

short repeat cycle) is optimal for recovering changes in ocean surface height associated 
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with currents and tides [Fu and Cazenave, 2001] but provides little new gravity 

information.  The short repeat orbit altimeters include Geosat/ERM, 1986-1989; ERS-1, 

1991-1995; Topex/Poseidon, 1992-2006; ERS-2, 1995-2010; GFO, 1998-2008; Jason-1, 

2001- 2012; Envisat, 2002-2012; and Jason-2, 2008-present. 

Achieving the desired 1 mGal accuracy of the global marine gravity will require new 

altimeter measurements having both dense ground tracks and high range precision.  

CryoSat-2 is the first altimeter in the past 15 years that offers advancements in both of 

these capabilities [Wingham et al., 2006].  CryoSat-2 was successfully launched in 

February of 2010 and has routinely collected altimetry data over ice, land, and ocean 

since July 2010.  The satellite has a long 369-day repeat cycle resulting in an average 

ground track spacing of 3.8 km at the equator (Figure 1).  Over the ocean, the altimeter is 

operated in three modes, which produce distinct returned signals. The standard Low Rate 

Mode (LRM) is the conventional pulse-limited radar altimeter mode that has been used 

by all previous radar altimeters (black lines in Figure 1).  This mode requires a relatively 

low data bandwidth and is used continuously over all ice-free ocean areas.  The new 

Synthetic Aperture Radar (SAR) mode is used over ocean areas where sea ice is prevalent 

as well as a few small test areas (green lines in Figure 1).   In this mode the radar sends a 

burst of pulses with an interval of 50 µs. The returning echoes are summed coherently in 

the along-track direction forming an 86-m long synthetic aperture.  This results in a 

footprint that is beam-limited and narrow (0.29 km) in the along-track direction and 

pulse-limited and broad (1.5-3 km) in the cross-track direction [Ford and Pettengill, 

1992; Raney, 1998]. In addition, the echoes are sorted by Doppler frequency, allowing 

for the formation of distinct radar-illuminated beams along the satellite ground track. The 

locations of these beams can be described by a “look” angle measured with respect to the 

satellite reference frame. The return signals from multiple beams can be combined after 

performing range migration, in a process termed “multilooking”, or “multilook 

averaging”. 

The SAR-mode is used over relatively flat areas of floating sea ice to measure ice 

freeboard.  If this mode were to be used extensively over the ice-free ocean it could 

(theoretically) provide a factor of 2 improvement in range precision which could translate 
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into a factor of 2 improvement in the global gravity models [Raney et al., 2003; Smith 

and Sandwell, 2004; Louis et al., 2010].  There is a third mode of operation to measure 

elevation and cross-track slope over land ice surfaces where there is significant 

topographic slope.  In this mode, the two antennas on CryoSat-2 are used to form a cross-

track interferometer. This is called the SAR/Interferometric Radar Altimeter (SARIN) 

mode.  Both the SAR and SARIN modes require a very high bandwidth data link to the 

ground stations. 

 

Figure 1. Ground tracks of the first 26 months of CryoSat altimeter data in its three modes of 
operation LRM (black), SAR (green), and SARIN (red).  White box shows area for LRM and 
SAR along-track 1 Hz noise and repeat-track coherence estimation. 

 

One focus of this study is the development of methods to track the return waveforms 

of the CryoSat-2 ocean data in the new SAR mode.  In addition, we provide results on the 

application of the 2-pass retracking method [Sandwell and Smith, 2005] to the new 
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standard-model altimetry data being provided by CryoSat, Envisat, and Jason-1.   Since 

we are mainly interested in measuring ocean surface slope along the track of the satellite 

profile, our approach is optimized for range precision at the expense of other information 

that could be extracted from the radar echoes such as significant wave height and wind 

speed.  We first review the theory for retracking the standard LRM waveform data.  Then 

using the same methodology we develop an analytic formula for the shape of the SAR 

waveforms under the ideal conditions of low significant wave height and small radar 

mispointing angle.  We show that this analytical model is an adequate approximation to 

the more fully developed waveform models that also include the effects of multilooking 

and radar mispointing  [Wingham et al., 2004; Cotton et al., 2010].  Moreover we 

approximate the trailing edge decay caused by the finite beamwidth of the antenna using 

a simple exponential decay [Amarouche et al., 2004].   Finally we evaluate the range 

precision and along-track resolution of the LRM and SAR data from CryoSat-2 through a 

comparison with the best available gravity models as well as noise estimates from other 

non-repeat orbit altimeters (Geosat, ERS-1, Envisat, and Jason-1).  Our analysis provides 

new estimates of range precision from Envisat and Jason-1 using the 2-parameter 

retracking method first developed for ERS-1 and Geosat [Sandwell and Smith, 2005].  

The results suggest that if CryoSat-2 continues to collect data for three full years, the 

accuracy of the global gravity field will improve by a factor of 2.  

 
Model Waveforms 
 

The shape of the return radar waveforms collected by the altimeter can be described as 

a function of the delay time τ , which is the sampling time t  referenced to the arrival 

time of the waveform t0 , such that τ = t − t0 . The power versus delay time for the model 

radar return pulse M τ( )  is given by the triple convolution of the source time function 

P τ( ) , the effective area of the ocean illuminated versus time A τ( ) , and the ocean 

surface roughness function G τ( )  [Amarouche et al., 2004] 

 
 
M τ( ) = P τ( )∗ A τ( )∗G τ( ) .                (1) 
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The source time function has the form of a sinc2 πτ
τ p
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deconvolution of a frequency modulated chirp.   The bandwidth of the chirp is 320 MHz.   

This results in an effective pulse length of 3.125 nanoseconds for an effective range 

resolution of the radar of .4667 m.  To simplify the convolution integrals, it is customary 

to approximate the sinc2 function with a Gaussian function of the form 

 

P τ( ) = 1
σ p 2π

exp −τ 2

2σ p
2

⎛

⎝⎜
⎞

⎠⎟
               (2) 

 

where σ p is the standard deviation of the pulse length given by σ p = 0.4541τ p  [Brown, 

1977].  Note the integral of this power over time is normalized to one.  The roughness of 

the ocean surface due to ocean waves is also well approximated by a Gaussian function 

[Stewart, 1985] 

 

G τ( ) = 1
σ h 2π

exp −τ 2

2σ h
2

⎛
⎝⎜

⎞
⎠⎟

               (3) 

 

where σ h  is related to the significant wave height hswh  by 

 

σ h =
hswh
4c

                 (4) 

 

where c  is the speed of light.  The order of the triple convolution given in equation (1) is 

unimportant so we begin by convolving the Gaussian approximation to the source 

function with the Gaussian wave height distribution resulting in 

 

P τ( )∗G τ( ) = 1
σ 2π

exp −τ 2

2σ 2

⎛
⎝⎜

⎞
⎠⎟

              (5) 
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where σ 2 = σ h
2 +σ p

2 . 

 

The final convolution, of the Gaussian pulse with the effective area of the ocean 

illuminated by the radar, determines the shape of the model waveform.  Since we are 

most interested in measuring the arrival time of the return pulse, our analysis is not 

concerned with the amplitude of the pulse.  In addition we will make the assumption that 

the diameter of the pulse-limited footprint is much less than the diameter of the antenna 

beam pattern so the variation in antenna power within the pulse-limited area is small and 

can be approximated as a constant.  Later, we will partly correct for the varying antenna 

pattern by multiplying by an exponential decay function with an empirically determined 

constant.  This approximation will break down when the off-nadir pointing angle reaches 

a large fraction of the antenna beam angle. 

 

Area of Ocean Reflection - Brown Model 

Over the ocean the CryoSat altimeter is operated in two modes (Figure 2).  The 

standard low rate mode (LRM) has pulses having approximately spherical wavefronts.  

These reflect from an annulus on the ocean surface having an area A r( ) = 2πrdr where r  

is the radius of the annulus and dr is the width of the annulus.  The approximate radius of 

the pulse versus time is given by [Walsh, 1977; Hayne 1980; Stewart, 1985]  

 

r τ( ) ≅ hcτ( )1/2 H τ( )                 (6) 

 

where H ( )  is the Heaviside step function.  While the radius of the annulus increases as 

the square root of time, the thickness of the annulus per unit time decreases as the square 

root of time 

 

dr = 1
2

hc
τ

⎛
⎝⎜

⎞
⎠⎟
1/2

dτ .                 (7) 
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so the area of the annulus is uniform after the arrival of the pulse. 

 

A τ( ) = πhcH τ( )dτ .                (8) 

 

Later we'll include a slow exponential decay in this effective area versus time function to 

approximate the finite beamwidth of the antenna pattern. 

 
Figure 2.  Interaction of a radar pulse with a flat surface.  (a) Area illuminated in standard LRM 
mode after the arrival of the pulse. (b) Area illuminated by the synthetic aperture radar (SAR) 
method where w is the effective width of the focused beam in the along-track direction. 
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The final step in generating the model waveform is to convolve the effective area 

versus time with the Gaussian pulse function 

 

M τ( ) = P τ( )∗G τ( )∗A τ( ) = hc
σ

π
2

exp
− τ − #τ( )2

2σ 2

$

%
&
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'

(
)
)H #τ( )d #τ
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∞

∫ .          (9) 

 

This can be written as 

 

M τ( ) = hc
σ

π
2

exp
− τ − "τ( )2

2σ 2
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Note that the definition of the error function is 

 

erf η( ) = 2
π

exp −ξ 2( )
0

η

∫ dξ .             (11) 

 

Let ξ = ′τ −τ
2σ

 so d ′τ = 2σdξ .  The integral becomes 

 

  M τ( ) = hc π exp −ξ 2( )
−τ
2σ

∞

∫ dξ
$

%

&
&
&

'

(

)
)
)
= hc π exp −ξ 2( )

0

∞

∫ dξ + exp −ξ 2( )
0
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∫ dξ
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'

(
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      (12) 

 

The final familiar result is 

 

M τ( ) = hcπ
2

1+ erf η( )!" #$=
A
2
1+ erf τ

2σ
%

&
'

(

)
*

!

"
+

#

$
,            (13) 
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where A is the amplitude and η = τ
2σ

.  The partial derivatives of the model with 

respect to τ , σ , and A are 

 

∂M
∂τ

=
−A

σ 2π
e−η

2

              (14) 

∂M
∂σ

=
−A
σ π

ηe−η
2

              (15) 

∂M
∂A

=
M
A

               (16) 

, respectively. 

 

SAR Model 

A similar approach is used to develop the waveform shape for the SAR model as well 

as its derivatives with respect to the model parameters.  When CryoSat is operated in the 

SAR mode, the footprint is focused to an effective width of w in the along-track direction 

[Raney, 1998; Wingham et al., 2004].  In this case the area of the illuminated ocean 

surface is approximately given by 

 

A r( ) = 2wdr                (17) 

 

when w << r  (Figure 2), implying that the illuminated beam pattern can be treated as  

close to rectangular.  Later we will evaluate the error in this approximation. As shown 

above, when dr is expressed in terms of the delay time it is 

 

dr = 1
2

hc
τ

⎛
⎝⎜

⎞
⎠⎟
1/2

dτ .              (18) 

 

So the area versus delay time function is given by 
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A τ( ) = w hc
τ

⎛
⎝⎜

⎞
⎠⎟
1/2

dτ               (19) 

 

The model return waveform is the convolution of the Gaussian pulse with this area versus 

time function 

 

M τ( ) = P τ( )∗G τ( )∗A τ( ) = w hc
σ 2π

exp
− τ − ′τ( )2
2σ 2

⎛

⎝⎜
⎞

⎠⎟
τ '−1/2 H ′τ( )d ′τ

−∞

∞

∫ .       (20) 

 

After a bit of algebra one arrives at 

 

M τ( ) =C exp −τ 2

2σ 2

"

#
$

%

&
' (τ −1/2 exp − 1

2σ 2

"

#
$

%

&
' (τ 2 +

τ
σ 2

"

#
$

%

&
' (τ

)

*
+

,

-
.d (τ

0

∞

∫          (21) 

 

where C = w hc
σ 2π

. 

 

Note that this integral can be performed analytically using the following formula 

[Gradshteyn, 1980] 

 

τ −1/2

0

∞

∫ exp −βτ 2 −γτ( )dτ = 2β( )−1/4 Γ 1/ 2( )exp γ 2

8β
⎛
⎝⎜

⎞
⎠⎟
D−1/2

γ
2β

⎛

⎝⎜
⎞

⎠⎟
        (22) 

 

where D−1/2 (x)  is the parabolic cylinder function and Γ x( )  is the gamma function for 

some argument x .  Note that Γ 1/ 2( ) = π .  We make the substitutions β = 1
2σ 2 and 

γ = −τ
σ 2  so the integral becomes 
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The final result is 

 

M τ( ) = w hc
2σ
!

"
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$

%
&
1/2

exp −
τ 2
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!
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$
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!

"
#

$

%
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$
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As in the case of the Brown model, we would like to compute the partial derivatives of 

the model with respect to τ , σ , and A.  The derivative of the model with respect to A is 

simply  

 

∂M
∂A

= M
A

.                (25) 

 

To compute the other derivatives we make use of the identity [Temme, 2010] 

 

∂
∂z

exp − 1
4
z2⎛

⎝⎜
⎞
⎠⎟ D−1/2 z( )⎡

⎣⎢
⎤
⎦⎥
= −exp − 1

4
z2⎛

⎝⎜
⎞
⎠⎟ D1/2 z( ) .          (26) 

 

Now we let z = −τ /σ .   Using the chain rule, the derivative with respect to τ becomes 

 

∂M
∂τ

= ∂M
∂z

∂z
∂τ

              (27) 

 

where ∂z
∂τ

= −1
σ

and ∂z
∂σ

= τ
σ 2 . 

 

Using the expression above, the derivative of the model with respect to z  is 
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∂M
∂z

= −Aσ −1/2 exp − 1
4
z2⎛

⎝⎜
⎞
⎠⎟ D1/2 z( ) .            (28) 

 

Combining terms one gets 

 

∂M
∂τ

= Aσ −3/2 exp − 1
4
z2⎛

⎝⎜
⎞
⎠⎟ D1/2 z( ) .            (29) 

 

A similar approach can be used to calculate the derivative with respect to σ.  

 

∂M
∂σ

= ∂M
∂z

∂z
∂σ

.              (30) 

 

By rewriting M = Aσ −1/2 exp − 1
4
z2⎛

⎝⎜
⎞
⎠⎟ D−1/2 z( ) we can form the derivative as the sum of 

two terms.  The first term is 

 

∂M
∂σ

⎛
⎝⎜

⎞
⎠⎟ 1

= − 1
2
Aσ −3/2 exp − 1

4
z2⎛

⎝⎜
⎞
⎠⎟ D−1/2 z( ) .           (31) 

 

The second term is 

 

∂M
∂σ

⎛
⎝⎜

⎞
⎠⎟ 2

= −Aτσ −5/2 exp − 1
4
z2⎛

⎝⎜
⎞
⎠⎟ D1/2 z( ) .           (32) 

 

Combining terms we find 

∂M
∂σ

= −Aσ −3/2 exp − 1
4
z2⎛

⎝⎜
⎞
⎠⎟
1
2
D−1/2 z( ) + τ

σ
D1/2 z( )⎡

⎣⎢
⎤
⎦⎥

.         (33) 

 

In summary we have the following results for the SAR waveform model and its 

derivatives with respect to τ, σ, and A  
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M = Aσ −1/2 exp −
1
4
z2#

$%
&
'(
D−1/2 z( )                                                              (34) 

∂M
∂τ

= Aσ −3/2 exp −
1
4
z2%

&'
(
)*
D1/2 z( )             (35) 

∂M
∂σ

= −Aσ −3/2 exp −
1
4
z2$

%&
'
()
1
2
D−1/2 z( ) − zD1/2 z( )*

+,
-

./
          (36) 

∂M
∂A

=
M
A

               (37) 

where z = −τ /σ .   As discussed in the next section, the model must also be multiplied by 

a function having an exponential decay for positive τ to account for the finite beamwidth 

of the radar antenna. 

 

 
Figure 3. (upper) Brown model waveform including the exponential approximation to the trailing 
edge decay for a 2 m SWH.  Model derivatives with respect to arrival time (dashed) and rise time 
(dotted) are also shown.   (lower) SAR model waveform including the exponential approximation 
to the trailing edge decay for a 2 m SWH.  Model derivatives are also shown.  
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Assessment of Approximate SAR Model 

This derivation assumes a nadir-pointing radar and does not include the complications 

due to multilook averaging. However, mispointing and multilook averaging can have 

important effects on the shape of the model waveform [Wingham et al., 2004; Cotton et 

al., 2010].  To date there is no completely analytical expression for the shape of the 

multilooked SAR model waveform and its partial derivatives with respect to arrival time, 

SWH, and off-nadir pointing angle.  Computation of the more complete numerical model  

[Phalippou and Enjolras, 2007] involves multiple numerical integrations and thus the 

only practical retracking approach will involve pre-computing models and partial 

derivatives for a suite of model parameters and building a retracking code that rapidly 

retrieves template models.  This purely numerical approach will require extensive 

development and testing.  In our marine gravity analysis we are mainly interested in the 

along-track slope of the ocean surface and are not interested in estimating SWH.  We 

show next that under certain conditions of moderate SWH and small off-nadir pointing 

angle, the analytic model (eqn. 34) is adequate for estimating along-track slope to better 

than 1 µrad.  Moreover because the formulation has analytic derivatives with respect to 

the model parameters, we can retrack 12 months of CryoSat SAR waveforms in about a 

day on a desktop computer.  This rapid analysis enables us to explore and refine least 

squares approaches and waveform weighting functions as well as parameter reduction 

approaches [e.g., Sandwell and Smith 2005].  We have found that whether for LRM or 

SAR-mode data, subtle factors such as the number of 20 Hz waveforms that are 

assembled in a single least-squares fit or the amount of along-track smoothing of the 

SWH between the 3-parameter and 2-parameter retracking can have a significant effect 

on the along-track slope precision. 

To assess the accuracy of the simple analytical model for estimating waveforms, we 

used our approach to retrack waveforms generated from the full-multilooked theoretical 

model including variations in SWH (0.5 to 8 m), and off-nadir roll angle (0.0˚ to 0.30˚) 

[personal communication, SAMOSA Project, Salvatore Dinardo, 2012].  The simulated 

waveform data was provided at a sampling of 1.5625 nanoseconds (or half the original 

tracking gate interval) to match the new L1b SAR format being provided by ESA. The 
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first test involved retracking a single-looked SAMOSA waveform over the range of SWH 

and off-nadir roll angle shown in Figure 4a.  When the off-nadir roll is 0˚, the analytic 

model and SAMOSA model waveforms agree in shape to better than 1 part in 1000 at all 

gates for the full range of SWH.  An exponential trailing edge decay function of the form 

exp −τ /α( )  was used to improve the fit where the best-fit α−1  was 0.0149 gate-1. The 

arrival time estimated from the fit of the analytical model to the nadir-pointing SAMOSA 

data agreed to better than 1 mm in absolute range.  The σ  parameter from the least 

squares model fit shows a good linear relationship with the SWH for the SAMOSA data 

with a misfit at smaller SWH due to the finite width of the point target response function 

not included in the analytic formulation (Figure 4b).  This comparison confirms that these 

two formulations agree in this single-look, nadir-pointing case.   

The least-squares fit of the analytic model to the multilooked (253 looks) SAMOSA 

waveform data show good visual fits for larger SWH but a poor fit at the base of the 

leading edge of the waveform (-15 to -5 ns) for an SWH of 0.5 m. This feature is referred 

to as the “toe” of the waveform. Multilooking is essentially an incoherent sum of the 

fore- and aft- looking beams in order to improve the signal-to-noise ratio of the 20 Hz 

waveforms [Wingham et al., 2004].  Prior to summation, the off-nadir beams are shifted 

in range according to their extra path length compared to the nadir beam.  Multilook 

averaging causes an overall smoothing of the waveform. The broad off nadir beams 

create the “toe” at the leading edge that is not available in the analytic model.  It should 

be noted that this multilook processing is designed for recovery of ice topography where 

multimeter excursions from the smooth geoid are common.  Therefore the beneficial 

effects of a more robust waveform amplitude are more important than retaining the 

sharpest possible leading edge.   

Although the multilook averaging has a significant effect on the entire shape of the 

waveform, it is nevertheless, still possible to adjust the parameters of the analytic model 

to provide a good match.  The question is how does this adjustment of the wrong-shaped 

analytic model affect the recovered parameters of arrival time and rise time?  

Remarkably, in the case of zero roll angle, the recovered arrival time agrees to better than 

1 mm with the actual arrival time over the full range of SWH.  However, the estimated 

rise time is over-estimated with respect to the true SWH, especially when the SWH is low 
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as shown in Figure 4b.  Indeed, based on this analysis one could conclude that recovery 

of SWH less than 2 m will be challenging and perhaps impossible because the 

multilooking smooths the waveform in a way that is well approximated by convolution of 

a 2-m Gaussian wave height distribution.   The remarkable conclusion is that the arrival 

time estimated by fitting an analytic model to a multilooked waveform, having zero roll 

angle, is accurate to better then 1 mm.  Of course when the actual noisy waveforms are 

modeled, the estimated arrival time parameter will be less accurate but this analysis 

suggests that there is not a significant range bias caused by multilooking.   

The more important issue is the arrival time error caused by a non-zero off-nadir roll 

angle.  Again we can use the simulated SAMOSA data to estimate the magnitude of this 

effect.  The results of this analysis are shown in Figure 5 where we plot the arrival time 

error from the fit of the analytic model as a function of SWH and off-nadir roll angle.  

We performed this analysis using both single look (Figure 5a) and multilooked (Figure 

5b) waveforms and the results are remarkably similar.  When the off-nadir roll angle is 

less than 0.02˚, the error is less than 7 mm.   Following the approach of Smith and 

Scharroo [2011], we calculated the off-nadir roll angle from the spacecraft orientation 

data provided in the L1b product for the month of April, 2011.  A constant 0.085˚ roll 

bias was included in the analysis.  A cumulative histogram versus off nadir roll shows 

that 90% of the data were acquired when the off-nadir roll angle is less than 0.12˚ (Figure 

5c).  Our least-squares fits to the SAMOSA waveforms having off-nadir roll of 0.12˚ 

show misfits of 1 mm error at SWH of 1 m rising to 3.6 mm at an SWH of 2 m and in the 

most extreme case of SWH of 6 m, the error is 23 mm.  Our objective for slope precision 

is 1 µrad.  To determine the maximum slope error that could be caused by this range error 

associated with the roll angle we also calculated the roll rate for an example SAR pass 

across the Pacific.  The maximum roll rate is 1.5x10-4 degrees per km along the satellite 

track.  Based on the analysis of the range error of 23 mm caused by a change in roll angle 

of 0.12 deg., we calculate an upper bound on slope error of 0.029 µrad.  This upper 

bound is 35 times smaller than our accuracy goal of 1 µrad so this error source is not 

important for construction of marine gravity.    However, it is likely and possible to have 

a range error of 23 mm over the length of a few thousand kilometers.  This magnitude of 

error is significant for construction of sea surface height models.  So we reiterate that our 
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retracking approach, which does not account for mispointing error, is adequate for 

measuring sea surface slope but not height. 

 
 

Figure 4. (a) Fit of analytic model to SAMOSA data (black dots) for single look (top row) and 
multilooked waveforms (bottom row) for wave heights of 0.5, 2.0, and 6.0 m and 0˚ off-nadir roll 
angle.  Note the poor fit of the analytic model to the “toe” of the multilooked waveform when the 
SWH is low (0.5 m). (b) Comparison of the rise time 4σ  from the best-fit analytic model to the 
SWH for the single- and multi-looked waveforms.  Except at low SWH, the rise time of the 
analytic model 4σ shows a good one-to-one relationship with the SWH. Meanwhile, the 
relationship for the multilooked waveform is not one-to-one suggesting that the analytic model 
accommodates the shape of the multilooked waveform by increasing the model rise time σ. 
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Figure 5 Error in arrival time for analytic model as a function of SWH for a range of off-nadir roll 
angles.  Fits to both single- and multi-looked waveforms are shown.  (c) Cumulative histogram of 
the absolute value of the off-nadir roll angle.  A roll bias of 0.085˚ has been included [Smith and 
Scharroo, 2011]. Grey shading shows the restricted parameter ranges to be used for gravity 
analysis. (d) Roll angle rate for a SAR pass across the Pacific. 
 

Least Squares Analysis 

Using these two functional forms for the LRM (eqn. 14) and SAR (eqn. 34) 

waveforms, we applied a standard Newton iterative least squares method to optimally 

estimate the 4 parameters of A-amplitude, t0 -arrival time, σ -rise time, and α -trailing 

edge decay [e.g., Thibaut et al., 2010].  The 4-parameter approach is commonly called 

maximum likelihood estimator (MLE4); if the trailing edge decay parameter is held 

fixed, then the approach is called MLE3.  Two previous studies [Maus et al., 1998; 
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Sandwell and Smith, 2005] showed that when a weighted MLE3 analysis is performed, 

there is a strong covariance between the estimate of arrival time and rise time resulting in 

a relatively noisy estimate of arrival time.  Moreover, these studies showed that if the rise 

time parameter is held to a fixed value, derived from about 40 km of along-track 

waveforms, the noise in arrival time is reduced by a factor of 1.57.  We call this the 2-

parameter approach but it could also be called MLE2.  As shown below, while there are 

significant benefits in terms of range precision by reducing the number of parameters for 

the CryoSat LRM data, there is no benefit in applying this approach to the SAR-mode 

data. 

The optimal algorithm for retracking CryoSat waveforms (LRM and SAR), as well as 

ERS-1, Geosat, Envisat, and Jason-1 waveforms, is based on trial and error using tens of 

ocean tracks.  In all cases, the best method is selected based on the median absolute 

difference between the along-track ocean slope, filtered at 18 km wavelength, and the 

slope of the ocean surface extracted from the EGM2008 global gravity model [Pavlis et 

al., 2012].  The parameters to be tuned are the trailing edge decay rate, the form of the 

power weighting function, and the number of waveforms to assemble into a single least-

squares analysis.  The optimal trailing edge decay values in gates-1 for each of the data 

types is: 0.006-Geosat; 0.022-ERS-1; 0.090-Envisat; 0.0058-Jason-1; 0.0130-

CryoSat/LRM; 0.0149-CryoSat/SAR.  The value of this parameter depends mainly on the 

beam pattern of the radar antenna, the off-nadir pointing angle, and the altitude of the 

spacecraft.  Except in the case of Geosat, which has large off-nadir excursions, we did not 

attempt to estimate this parameter from the waveform data for two reasons.  First, 

allowing the parameter to vary rapidly along a satellite track will increase the noise in the 

range precision, which in turn, will increase the error in the final gravity estimate.  For 

example, Smith et al. [2011] solved for the trailing edge decay for CryoSat/LRM 

waveforms.  When they mapped these into off-nadir pointing angle, the excursions were 

three times larger than the measured off-nadir pointing of the spacecraft.  The implication 

is that least-squares estimates of this parameter are not robust.  Second we showed above 

(Figure 5d) that the off-nadir variations vary smoothly over each orbit so the slope error 

introduced by neglecting this effect will be small.  Note that the height error caused by 
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variations in off-nadir pointing is sometimes significant and should be accounted for 

when retracking for measuring ocean heights [Thibaut et al., 2010]. 

The second type of tuning was related to the form of the weight function used in the 

least-squares analysis.  Theoretical considerations [Brown, 1977] show that because the 

ocean surface scattering follows a Rayleigh distribution the noise of the data within the 

waveform should be proportional to the power.  In addition there should be a pre-arrival 

noise level based on the engineering characteristics of each altimeter. These two 

parameters were tuned to achieve the best fits between along-track slope and EGM2008 

slope for numerous profiles.  It is interesting that all the Brown-type waveforms (Geosat, 

ERS-1, Envisat, Jason-1, and CryoSat/LRM) required a significant downweighting of the 

higher power data while the CryoSat SAR waveforms had best fits when a uniform 

weight was used. 

The third type of tuning is the number of 20 Hz waveforms to be used in each least-

squares adjustment. In a previous study involving ERS-1 [Sandwell and Smith, 2005] we 

found optimal along-track slope fits when three waveforms were used and the two outer 

waveforms were given ½ the weight of the central waveform.  This approach is also 

optimal for CryoSat/LRM and SAR and we simply adopted the same weighting scheme 

for Envisat and Jason-1.  Note that Geosat waveforms are provided at 10 Hz and we 

found that fits to single waveforms provided optimal results.  Later when the 20-Hz noise 

levels of each altimeter are presented, the Geosat values will be multiplied by a factor of 

1.41 to account for the reduced number of independent waveforms in the least-squares 

adjustment. 

Examples of fits to the three modes of CryoSat data are provided in Figure 6.  The left 

plot shows fits to the LRM data using the 2-parameter Brown model.  As described in the 

Sandwell and Smith [2005] study, a two-step retracking approach was used.  The data are 

assembled into continuous tracks of 20-Hz waveforms.  A three-parameter retracking is 

performed during the first pass; then the rise time parameter is smoothed over a ½ 

wavelength of 45 km and the pass is retracked a second time using this fixed value of rise 

time.  A similar approach is used for the SAR and SARIN data.  In all cases the model 

and the data show good agreement with one notable exception where the “toe” of the 

SAR and SARIN waveforms is not well matched by the model.  As discussed above, this 
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toe is due to multilooking the SAR waveforms to improve their signal-to-noise ratio.  The 

three lower plots in Figure 6 show the waveform residuals for 100 waveforms in each 

case.  As expected the misfit to the LRM waveform is greater where the power is greater 

and there is no systematic variation to the misfit.  The misfit to the SAR waveform shows 

a prominent leading edge signature cause by a poor match at the “toe”.   This analysis 

does not reveal the precision in the arrival time needed for the gravity field construction. 

 
Figure 6. (a) Least squares fit of model waveforms to LRM, SAR, and SARIN data.  Residuals 
shown below are misfits from 1000 waveforms to reveal scatter as well as systematic variations.  
The SAR model single-look waveform does not match the “toe” in the waveform data resulting in 
a systematic misfit.  
 

Noise and Coherence 

We use two approaches to estimate the noise and spatial resolution of the retracked 

data.  A commonly-used estimate of retracker noise is the standard deviation of the 20Hz 

range estimates about the 1 Hz mean [Cheney et al., 1991; Gommenginger et al., 2011].  

Rather than using the mean, we converted the range to sea surface height and computed 

the standard deviation from the EGM2008 model.  Using a reference model can be 
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important in areas of high geoid slope such as the walls of the deep ocean trenches.  We 

selected a rectangular region in the North Atlantic such that the passes collected in the 

western half were mostly in LRM mode, while the eastern half contained SAR-mode data  

and plotted this 20 Hz estimate vs SWH (white box in Figure 1). We did the same 

analysis for Geosat, ERS-1, Envisat, and Jason-1, as shown in Figure 7.   This was done 

for 3-parameter (green dots) and 2-parameter (blue dots) retracking.  The solid smoothed 

curves are median averages of these estimates in 0.4 m SWH bins.  Noise estimates of 

each altimeter at 2 m and 6 m SWH are provided in Table 1.    

As expected, the noise level of the SAR data is between 1.8 and 1.3 times better than 

the other altimeters when all retracking is done using three parameters. For 2 m SWH, 

our computed value of 49.7 mm differs by less than a 1 mm from those obtained using 

different SAR waveform retracking approaches [Giles et al., 2012; Gommenginger et al., 

2012].  This result is somewhat less than the expected factor of 2 improvement in range 

precision based on engineering analysis [Raney et al., 2003].  There are two possible 

reasons why we have not achieved this factor of 2 improvement.  First it is possible that 

our fits to the SAR waveforms are suboptimal because our model does not include the 

toe-signal caused by multilooking.  Second, the factor of 2 improvement was based on an 

open-loop SAR design where the 18 kHz pulse repetition frequency of the SAR was 

continuous [Raney, 1998].  In the case of CryoSat the radar operates in a burst mode 

where 64 pulses are emitted and recorded such that the radar is only emitting about 1/3 of 

the full 18 kHz rate.  The more surprising result is that in the case of 2-parameter 

retracking, the reduction in noise level of the SAR waveforms is small while for the non-

SAR data the noise reduction is large and very close to the theoretical noise reduction of 

1.57.  Indeed, for 2 m SWH the noise of the CryoSat LRM is lowest (42.7 mm), followed 

by Jason-1 (46.7 mm,)  and then CryoSat SAR (49.7 mm).  At 6 m SWH Jason-1 has the 

lowest noise level of 64.2 mm followed by LRM (71.7 mm), Envisat (88.6 mm), and then 

SAR (110.9 mm).   The relatively poor performance of the SAR-mode data at the larger 

wave heights could reflect the increase in arrival time error with increasing SWH shown 

in Figure 4 but it could also result from off-nadir wave height noise.  It is also notable 

that the noise levels of the new altimeters (Envisat, Jason-1, and CryoSat) are 
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significantly lower than the noise levels of the older (Geosat and ERS-1) altimeters.  This 

could be simply due to the nearly factor of 2 increase in PRF in the newer altimeters. 

One of the more remarkable findings is that the ratio of 3-parameter noise to 2-

parameter noise is largely independent of altimeter and very close to the theoretical value 

of 1.57 based on a least-squares simulation (Table 1).  Later we will perform a similar 

simulation using the SAR waveform to demonstrate why this two-pass approach is not 

beneficial for SAR data.   

A previously unexplored issue related to this 2-pass retracking method is what part of 

the wavenumber spectrum benefits most.  To explore this issue we computed power 

spectra along satellite tracks of the difference in height between the 3-parameter and the 

2-parameter approach as shown in Figure 8.  All the altimeters show elevated power 

spectral density between the wavelengths of 45 km and 5 km, which has been called a 

spectral “hump”.   The fall-off in the difference spectra for wavelengths greater thatn 45 

km simply reflects the wavelength over which the SWH was smoothes between the 3-

parameter and 2-parameter retracking.  At longer wavelengths, both retrackers provide 

the same height measurement because the profiles contain the same SWH signal.  At 

shorter wavelengths there is a significant filtering of the SWH, so the retrackers provide 

very different output.  At the shorter wavelength end of the difference spectrum between 

10 km and 3 km the outputs from the two retrackers also become similar.  We speculate 

that this is due to the finite pulse-limited diameter of the radar footprint.  We note that the 

shortest wavelength available in marine gravity models derived from altimetry is about 

12 km so this finite footprint size is not yet a limitation on gravity field resolution. 
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Figure 7 Standard deviation of retracked 20 Hz height estimates with respect to EGM2008 (mean 
removed) for all geodetic mission altimeter data (Geosat/GM, ERS-1/GM, Envisat 35/30 repeat, 
and CryoSat LRM, SAR and SARIN.   The data are from a region of the North Atlantic with 
relatively high sea state, white box in Figure 1 except the SARIN data are from the South 
Atlantic.  Green dots are from 3-parameter retracking while blue dots are from 2-parameter 
retracking (every 10th point plotted).  The thick lines are the median of thousands of estimates 
over a 0.4 m range of SWH.  Note the 2- and 3-parameter results are nearly identical for the 
CryoSat SAR data.  The 10Hz Geosat estimates were scaled by 1.41 to approximate the errors in 
at a higher sampling rate of 20 Hz.   
 

 
Figure 8 Power spectra of the difference in along track height between passes retracked with the 
3-parameter model and the 2-parameter model after smoothing the SWH over a ½ wavelength of 
45 km.  There is a “hump” in the spectrum between 5 and 45 km where most of the noise 
reduction occurs.  
 

Table 1. 20 Hz Altimeter Noise (mm) 
Altimeter 3-PAR @ 2 m 2-PAR @ 2 m 3-PAR/2-PAR 2 PAR @ 6 m 
Geosat 88.0 57.0 1.54 105.4 
ERS-1 93.6 61.8 1.51 111.8 
Envisat 78.9 51.8 1.52 88.6 
Jason-1 75.9 46.4 1.63 64.2 
CryoSat LRM 64.7 42.7 1.51 71.7 
CryoSat SAR 49.5 49.7 .996 110.9 
CryoSat SARIN 138.5 138.7 .998 148.6 
Standard deviation of retracked 20 Hz height estimates with respect to EGM2008 (mean 
removed).  The data are from a region of the North Atlantic with relatively high sea state.  
The values represent the median of thousands of estimates over a 0.4 m range of SWH.  
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The 10Hz Geosat estimates were scaled by 1.41 to approximate the errors in at a higher 
sampling rate.   Note in all cases except for the CryoSat SAR and SARIN modes, the 3-
PAR to 2-PAR noise ratio is close to the 1.57 value derived from a least-squares 
simulation. 
 

A cross-spectral analysis of repeating altimeter profiles can be used to assess the 

shortest wavelength resolvable in the along-track slope data [Marks and Sailor, 1986].  

This is important for designing low-pass filters to be applied to the 20Hz data prior to 

gravity field construction [Yale et al., 1995].  The spectral coherence between height 

measurements along repeating profiles is a measure of the ratio of the common geoid 

signal to the time varying oceanographic noise, as a function of spatial wavelength.  The 

value of coherence is close to 1 at longer wavelengths where the signal dominates, and is 

small (< 0.2) where the noise dominates [Bendat and Piersol, 1986].  A conservative 

estimate of the effective resolution of the along-track data is given by the wavelength at 

which the coherence level is 0.5. 

We selected ground tracks within a region in the North Atlantic Ocean and assembled 

pairs that repeat to within about 1 kilometer apart. This set of tracks included both LRM 

and SAR mode data, and we performed the coherence analysis separately for each mode. 

For data from both modes, results from 2-parameter retracking were used to compute the 

along-track slopes.  To obtain statistically significant coherence estimates we used 

Welch’s modified periodogram method on multiple passes. The data were pre-whitened 

by taking the along-track derivative, resulting in along-track slope. The resulting 

coherence curves are shown in Figure 8.  We found that LRM slope acquisitions have a 

resolution limit of 27 kilometers, while for SAR, this was at 26 kilometers.  In 

comparison, previously published values using a similar analysis in another area of the 

Atlantic quote a 33-kilometer resolution for Geosat, and 33-kilometer resolution for ERS-

1 [Yale et al, 1995]. These preliminary results suggest that the spatial resolution of 

CryoSat-derived gravity will be at least 1.2 times better than previous models.  

The power spectrum of the SWH has a change in trend at a wavelength of 45 km (see 

Figure 4b).  This reflects the wavelength where the noise in the estimation of SWH is 

larger than the SWH signal.  For ERS-1 the break in the spectrum occurred at ~90 km 

[Sandwell and Smith, 2005].  We used this as the filter wavelength to smooth the SWH 
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before 2-parameter retracking.  This analysis suggests that we could do less smoothing 

for the CryoSat data because the SWH is more accurately determined.  This will provide 

better results in areas where there is a spatially rapid variation in swell height.  

 
Figure 9 (a) Coherence versus spatial wavenumber (wavelength) for repeat along-track 
slope profiles in the North Atlantic (white box in Figure 1).  The LRM/SAR coherence 
falls to a value of 0.5 at a wavelength of 27 km / 26 km and a value of 0.2 at a 
wavelength of 22 km / 20 km. (b) Power in SWH versus wavenumber (wavelength) for 3-
parameter retracking of LRM (solid) and SAR (dashed). 
 

 

Correlated Model Errors 

The big surprise in this analysis is that the 20 Hz range precision and along-track 

coherence are very similar for the CryoSat SAR and LRM modes when the LRM is 

retracked at 2 parameters.  To investigate why this happens in the least squares fitting one 

can examine the 3x3 covariance matrix which provides the relative uncertainties in the 

accuracy of the estimated parameters as well as their cross correlations.  The results are 

provided in the table below where the covariances were scales so the arrival-time 

variance is one.  The analysis was done for both the LRM and SAR modes for SWH of 2 

m and 6 m. In general the SWH is more accurately estimated for the SAR than for the 

LRM (i.e. sigma-sigma term).  More important the cross correlation between sigma and 

tau is relatively large for the LRM (0.27 @ 2m SWH and 0.43 @ 6 m SWH.  In contrast 

the cross correlation between sigma and tau is smaller for the SAR (0.11 @ 2 m SWH 

and 0.19 @ 6 m SWH).   
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 LRM  SAR 

 

2 m 

0.0678 0.1324 0.1379  0.1505 0.0714 0.2348 

 1.0000 0.2694  1.0000 0.1115 

  1.3947   1.0644 

 A τ  σ   A τ  σ  

 

6m 

0.0441 0.1381 0.1392  0.0662 0.0749 0.1682 

 1.0000 0.4356  1.0000 0.1903 

  1.3489   1.0832 

 

Comparison with EGM2008 

Thus far we have evaluated the quality of the various altimetry data sets that are used 

to construct the marine gravity field by examining the noise and spectral characteristics 

of the slope measurements along the satellite ground tracks. Another way of evaluating 

the performance is by comparing it with another gravity model. We accomplish this by 

differencing altimeter slope profiles with those computed from the Earth Gravitational 

Model 2008 (EGM2008) [Pavlis et al., 2012]. This is a model of the Earth’s gravitational 

potential that is complete up to spherical harmonic degree and order 2159, resulting in an 

effective resolution of 5 arc-minutes at the sea surface. EGM 2008 merges data from 

satellite gravity (the ITG-GRACE03S model, produced using data from the Gravity 

Recovery and Climate Experiment mission), as well as terrestrial, altimetry-derived, and 

airborne free-air gravity surveys. The root mean square of the slope differences between 

these gravity data sets provides a way to quantify the magnitude of the errors of the 

altimeter profiles as well as to characterize their spatial distribution across the global 

ocean. 
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Figure 10. (a) RMS differences between slopes from EGM 2008 and those from profiles 
collected from the CryoSat, Envisat, and Jason-1 missions across the global ocean. Note 
the relatively higher errors concentrated in a latitudinal band in the southern hemisphere. 
Other examples of areas with high noise include those with (b) steep seafloor topography, 
(c) mesoscale variability associated with ocean surface circulation, and (d) shallow 
coastal regions where tide models are prone to errors (see text for further discussion).  

 

In figure 10 we show maps of these RMS differences between CryoSat, Envisat, and 

Jason-1 along-track slopes and those from EGM2008. A low-pass filter with a 0.5 gain at 

12 km wavelength was applied to the difference profiles. After filtering, the RMS 

differences were averaged in 0.20° cells. For all altimeter data sets, there are several 
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common patterns of high noise areas that stand out from the background level of about 2 

microradians (tinted blue on the map) that is prevalent across the deep and open ocean. 

These have different geophysical sources, namely: sea surface roughness due to wind 

waves, sharp tectonic features, mesoscale ocean variability, and sea ice cover.  

Prevalence of stormy weather between 60° S and 30° S leads to high winds and large 

amplitude waves, inducing greater radar ranging error and thus impaired slope retrieval. 

Meanwhile, in areas of large amplitude, small-scale, seafloor topography such as at the 

global spreading ridge system, over large seamount crests, and fracture zone offsets 

(Figure 10b), sharp changes in the slope are not captured by the EGM2008 model. There 

are also some areas of higher slope error in regions that are adjacent to persistent surface 

circulation patterns associated with boundary currents such as the Gulf Stream (Figure 

10c), the Kuroshio, and the Agulhas Current, as well as the equatorial circulation in the 

Pacific and the Antarctic Circumpolar Current. While there is a dynamic ocean 

topography model incorporated in EGM2008 that partly accounts for global ocean 

circulation patterns, it does not compensate for mesoscale variability that is a 

consequence of meandering currents and eddies.  

Meanwhile, for the polar regions that are encompassed by the CryoSat and Envisat 

observations, another source of slope error is due to the shifting sea ice cover. This could, 

however, be potentially addressed by adopting a waveform processing scheme that 

discriminates between sea ice and open ocean returns, and selects different retracking 

techniques that are optimized for each case. 

Higher discrepancies among slopes from altimetry and EGM 2008 are also present for 

coastal regions with shallow (< 1 km) bathymetry, especially at continental shelves 

(Figure 10d). In this case, the error in the altimeter measurements results from corrections 

for the contributions of the tides to the sea surface heights. This could be addressed by 

employing more accurate and higher-resolution tidal models that are suitable for coastal 

applications. 

 

Conclusions 

To measure marine gravity anomalies at an accuracy under 1 mGal, the error in the 

along-track slopes from the altimeter profiles must be about 1 µrad, or there must be 
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enough repeated tracks to achieve the 1 µrad accuracy. This study compiles several 

contributions towards this goal.  

We have shown that a simple analytic function, which we derived to model CryoSat 

SAR-mode waveforms, performs well in estimating along-track sea surface slope. An 

intercomparison with simulations conducted by the SAMOSA project, we have 

demonstrated that for small off-nadir mispointing in the roll direction (< 0.12°), and 

moderate sea surface roughness (< 6 m), our model is capable of estimating slopes with 

under 1 µrad of error.  This is in spite of the fact that the model does not account for the 

multilook averaging used to assemble the SAR waveforms. We then calculated the range 

precision at 20 Hz for a large set of altimeter profiles collected in SAR mode and found 

that it was almost two times better than earlier noise levels for ERS-1 and Geosat.  

Two-pass retracking was originally developed specifically for ERS-1 data [Sandwell 

and Smith., 2005], but we have established that this method also results in a factor of 1.5 

improvement in precision for pulse-limited altimetry waveforms for all three new satellite 

missions. Meanwhile, almost no noise reduction was seen in the CryoSat SAR and 

SARIN-mode data. This may be attributed to the differences in the nonlinear models used 

for these modes and that for conventional waveforms. To validate our sea surface slope 

measurements, a comparison was conducted with the comprehensive, high-resolution 

EGM2008 spherical harmonic model, and the results show excellent correspondence. 

Various forms of spectral analyses were also carried out. These all demonstrate that 

observations from CryoSat, Envisat, and Jason-1 are not only suitable for the recovery of 

sea surface slopes, but unequivocally offer significant advantages over data from 

preceding altimetry missions.  
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