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Abstract

We give analytical estimates of the rate at which energy is ex-
tracted from the barotropic tide at topography and converted into
internal gravity waves. The ocean is idealized as an inviscid, verti-
cally unbounded fluid on the f—plane. The gravity waves are treated
by linear theory and freely escape to z = co. We investigate several
topographies: a sinusoidal ripple; a set of Gaussian bumps; and an en-
semble of “random topographies”. In the third case, topographic pro-
files are generated by randomly selecting the amplitudes of a Fourier
superposition so that the power spectral density is similar to that of
submarine topography. Our focus is the dependence of the conversion
rate (watts per square meter of radiated power) on the amplitude of
the topography, hg, and on a nondimensional parameter €, defined as
the ratio of the slope of an internal tidal rays to the maximum slope
of the topography. If €, < 1 then the theory of Bell (1975) indicates
that the conversion is proportional to h2. Our results span the interval
0 < e, < 1 and show that the enhancement above Bell’s prediction is
a smoothly and modestly increasing function of €,: For e, — 1, the
conversion of sinusoidal topography is 56% greater than Bell’s €, < 1
estimate, whilst the enhancement is only 14% greater for a Gaussian
bump. With random topography, the enhancement at e, = 0.95 is
typically about 6% greater than Bell’s formula. The ¢, < 1 approxi-
mation is therefore quantitatively accurate over the range 0 < €, < 1,
implying that the conversion is roughly proportional to h3. As e, is
increased, the radiated waves develop very small spatial scales which
are not present in the underlying topography, and when ¢, approaches
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unity, the associated spatial gradients become so steep that overturns
must occur even if the tidal amplitude is very weak. The solutions
formally become singular at e, = 1, in a breakdown of linear, inviscid
theory.

1 Introduction

The role of the internal tide in mixing the abyssal ocean is currently a
fashionable topic in oceanography (Munk and Wunsch 1998, Ledwell et al.
2000). For the purpose of understanding deep-ocean mixing the single most
important issue is to estimate the rate at which energy is extracted from
the barotropic tide and radiated into internal gravity waves at topographic
features. The simplest analytical estimates of this “conversion” (e.g., Bell
1975(a, b); Khatiwala 2002; Llewellyn Smith & Young 2002), assume inter
alia that the topography is “weak” in the sense that the bottom boundary
condition can be applied approximately at a flat surface instead of the actual
bumpy bottom. This weak-topography approximation is justified provided
that the topographic slopes are much less than the slope of the internal tidal
rays. In other words, the ratio of the maximum topographic slope to the ray
slope, a nondimensional parameter €,, must be small. The weak-topography
approximation is valid, and the problem is solved, if €, < 1.

The weak-topography approximation quickly leads to compact formu-
las expressing the conversion in terms of the spectral characteristics of the
topography, the properties of the barotropic tide, and the ocean stratifica-
tion. One could more confidently and usefully apply these results if their
bounds of validity were better delineated. And the approximation would be
more powerful if we better knew the structure of the first corrections which
account for nonzero €,. The goal of the present work is to evaluate such
corrections.

Previous studies of the effects of large topographic slope include ray-
tracing models (Rattray 1960, Baines 1973), and numerical computations
(Holloway and Merrifield 1999; Khatiwala 2002; Li 2002). Unfortunately, ray
tracing is complicated and difficult to adapt to general situations, whereas
direct numerical approaches encounter problems due to the generation of
what appear to be extremely fine spatial scales in the wavefield (c¢f. Baines’
figures, and recent solutions obtained by Polzin, 2002). Here, we adopt a
new approach to the tidal conversion problem, and expose directly how the
wavefield develops small scales as €, increases, and even becomes singular
as €, — 1.

In section 2 we formulate the finite-slope conversion problem in terms of



a streamfunction. We give several formulas which can be used to calculate
conversion rates from the Fourier representation of the streamfunction. Sec-
tion 3 is a detailed account of the conversions produced by tidal flow over a
sinusoidal bottom. In section 4 we introduce a family of topographic profiles
which can limit to a periodically-spaced sequence of Gaussian bumps. By
moving these bumps further apart, while maintaining their width, we esti-
mate the finite-slope conversion produced by a Gaussian ridge. In section
5 we treat “random topography”; profiles generated by randomly select-
ing the amplitudes of a Fourier superposition and engineered so that the
power spectral density is similar to submarine topography. We also present
a calculation of the average conversion produced by an ensemble of such
topographies, correct to second order in €. Section 6 is the conclusion and
discussion.

2 Formulation

We idealize the ocean as a rotating, inviscid fluid layer in which the tide
sloshes to-and-fro along the x-direction; z denotes the vertical. The barotropic
tide is modelled as the periodically reversing, spatially uniform flow

U = Up& coswyt . (1)

Conversion to internal gravity waves occurs because this tide flows over a
bumpy bottom; we denote the vertical amplitude of the bottom bumps by hyg.
We suppose that the ocean has unlimited vertical extent and consequently
we require that, as z — 400, there is only upward radiation.

Because the topography is independent of y, so too is the disturbance
created by tidal action. Linearization is justified provided that the tidal
excursion, Up/wp, is much less than the scale of the topography. This pa-
rameter restriction also ensures that terms such as Uy cos(wot)V24, can
be neglected relative to V2¢;. Thus, the governing fluid equations for the
induced velocity (u,v,w), pressure p and buoyancy b, are

ut_fov+p$:07 Ut+f0U:0, wt+pz_b:07 (2)
and
by + N?w=0, Uy +w, =0. (3)

In these equations fy is the Coriolis frequency, N is the constant buoyancy
frequency and the density is written as p = po(1 — g N2z — g~ 1b).



The velocity in the (z, z)-plane can be represented using a streamfunc-
tion ¥ (x, z,t): (u,w) = (—,,%;). The problem then reduces to solving the
internal gravity wave equation,

vzwtt + fngz + NQwacx =0, (4)
where V2 = 92 + 92. The bottom boundary condition is that
Y(x, h,t) = Uph(z) cos(wot) . (5)

The condition in (5) ensures that the total streamfunction, —Upz cos(wot) +
1, vanishes on z = h(x).

We study model topographies which are periodic in  with wavelength
A and wavenumber

27
ko= —.
0=2 (6)
The examples considered below are
h = hgcoskor and h = hgexp|—2vysin®(koz/2)], (7)

where v is a nondimensional parameter, and the “random topography” ob-
tained by Fourier superposition.

Ray angles and nondimensional variables

One remarkable property of the internal tide is that the rays emitted from
topography make a fixed angle with the horizontal. To express this ray angle
in terms of the three fundamental frequencies in this problem we define

N? — Wi
pe= ¥ 8
o )

p~!is then the slope of the internal gravity wave rays generated by the tide.
In other words, the internal-tidal beams form angles & tan~!(1/u) with the
horizontal.

We say that the topography is “weak” if the topographic slopes are
everywhere much less than p~1; the topography is “subcritical” if the slopes
are less than p~'; the topography is supercritical if the topographic slope is
somewhere steeper than p .

It is convenient to introduce nondimensional coordinates

X =kox, Z=pkoz. (9)



In the (X, Z)-plane the tidal rays enclose angles of +45° with the horizontal.
We also represent the topography in the form h = hoH(X) where H is a
nondimensional profile function (e.g., in the sinusoidal case, H(X) = cos X).
With this notation the bottom is at Z = eH (X ), where

€ = hokou . (10)

In the sinusoidal case, the parameter € is the ratio of the maximum topo-
graphic slope, hoko, to the slope of a tidal beam p~!.
We consider the steady-state wave conversion by looking for time-periodic

solutions with the tidal frequency: we introduce ¢ = ¢, + ip;, where
¥ = UphoR {e*i“’otgo} = Upho (¢, cos wot + @; sinwot) , (11)
so that (4) becomes

PXX =Yz7- (12)

The lower boundary condition in (5) then becomes ¢(X,eH) = H. The
mathematical problem is completed by insisting that there is only upwards
energy flux as Z — oo. This radiation condition ensures that ¢ has both a
real and an imaginary part.

Our formulation takes no account of the ocean surface which would re-
flect the internal tide back down to the bottom: the model ocean is ver-
tically unbounded and the gravity waves escape freely to z = co. Using
the weak-topography approximation, Khatiwala (2002) and Llewellyn Smith
and Young (2002) have shown that the effect of an upper boundary is to
greatly reduce the conversions produced by topography whose horizontal
scale exceeds that of the internal tide. Inclusion of this important process
introduces another nondimensional parameter measuring the ocean depth
into the problem, and the current theory is valid only when this quantity is
relatively large.

A Fourier representation

Because the geometry is periodic in x, a Fourier series is a natural way of
representing the solution of (12). Thus we can solve (12), and simultaneously
impose the radiation condition at z = +o0, by writing

e_iwot@(X, Z) _ Z ¢nei(nX—|n\Z)—iwot ) (13)

n=—oo



The construction in (13) has downwards vertical phase propagation (and
therefore upwards energy propagation) at both positive and negative n. We
emphasize a crucial limitation of (13): because the energy flux is upwards
everywhere (even in the valleys below the crests of the topography) we are
limited to the case in which the topography is strictly subcritical. In other
words, (13) is correct only if the slope of the topography is everywhere
shallower than the slope of the tidal beams. Once the topography is su-
percritical there is downwards energy propagation below the topographic
crests. (There are interesting analogies between this issue and Rayleigh’s
hypothesis in optics; see, for example, Keller 2000.)

To complete the solution, we determine the coefficients ¢, in (13) by
applying the boundary condition ¢(X,eH) = H:

H(X)= ) ¢nexp[inX —iln|eH(X)] . (14)

n=—oo

This is essentially a big set of linear equations for {¢,} (a numerical recipe
for solving the system is given in Appendix A). We recover the weak-
topography approximation by assuming that ¢ < 1. In this case we can
neglect the term —|n|eH in the exponential on the right-hand side of (14)
and (14) is then a standard Fourier series. We deduce that H(X) = ¢(X,0)
and we recover the results of Bell (1975a) immediately. Our main goal here
is to solve (14) over the entire subcritical range for several model topogra-
phies and so make an assessment of the accuracy of this weak-topography
approximation.

The limitation to the subcritical case is restrictive (e.g., island arcs are
supercritcal). However at mid-ocean ridges the large-scale Fourier compo-
nents of the topography have subcritical slopes, while the small-scale com-
ponents are supercritical. The transition occurs at topography with a hor-
izontal wavelength of roughly 1 kilometer (St. Laurent and Garrett 2002).
St. Laurent and Garrett argue that it is the longer wavelengths of the in-
ternal tide which carry most of the energy flux. Thus the subcritical case is
relevant to the generation of the internal tide by the large-scale topographic
components of mid-ocean ridges.

The conversion rate

The main quantity of interest is the conversion rate of barotropic tidal energy
into internal gravity waves. To calculate the conversion rate we begin with



the energy equation obtained from (2) and (3):

30 + 0% +w? + N2, + ¢hup, — ope = 0. (15)
For the periodic flow, the average of (15) over the tidal cycle implies that
V-J=0, (16)

where J is the phase-average of the energy flux (¢p,, —p,); using (11) this
phase-averaged flux can be written as:

U300
4(4}0

J = [(N? — ) (pps — % 0a) , —(w§ — f3) (el — o™ p2)] . (17)

The expression for J above is in the (z, z)-plane (not the (X, Z)-plane).
Above the crests of the topography the conversion is given by the inte-
grated vertical flux of energy,

w/ko
_ ko Ty s (18)
2 —n/ko
Putting (13) and (17) into (18), we obtain C in terms of ¢,, as
pgkoUgh%
=0 p 19
¢ = Pl (19)

where

oo
T(e)= Y Inlda(e)dy(e). (20)
n=-—o0o
The units of C in (19) are Watts per square meter.
Below the crests of the topography we cannot use (18) and (19). Instead,
denoting the upward topographic normal by

n=(—hg1)/y/1+h2, (21)

we can calculate C by integrating J - n along the topography z = h(x).
This line integral following the bottom can be converted to an integral with
respect to x by noting that d¢ = dx+/1 4+ h2. We record the intermediate
result that

_P0U02ho
2

J(z,h) = Giz(z, W) h [(N? —wdhe, (W] — fD)] . (22)

These manipulations eventually lead to another expression for the conversion
rate:

pokoUghg 2 22 [ 2 172 , dX
*27%\/(]\7 —wy)(wg — f5) _7(}*6 HX)H%Z(XJH)go

(23)

C =



The inversion symmetry

Equation (14) has an important symmetry, obtained as follows: If we take
the complex conjugate, then the left-hand side of (14), being real, does not
change. But, from comparing the transformed right-hand side with that of
the original equation, we conclude that

Pn(€) = dZn(—e). (24)

This is not the well-known reality condition because ¢ has changed signs,
which is equivalent to a reflection of the topography about z = 0 (e.g., so
turning a topographic ridge into a trench). Thus, given the solution of (14)
for a topographic ridge, we can use the inversion symmetry, (24), to obtain
the solution for a trench (and vice versa).

Furthermore, using the inversion symmetry, the sum in (20) can be writ-
ten as

L(e) =) nldn(€)d(€) + dn(—)¢r(—0)] - (25)
n=1

It follows that I'(e) = I'(—¢) so that a trench and a ridge have the same
conversion. This result is not intuitively obvious to us. Indeed, our proof
is obscure because it relies crucially on the representation in (13). Con-
sequently, the proof is restricted to the case of subcritical topography. In
fact, when the topography is supercritical, (13) is no longer suitable be-
cause gravity waves can be radiated downwards and the resulting patterns
of secondary reflections must certainly distinguish between a trench and a
ridge.

3 Sinusoidal topography

In this section, we solve (14) for the sinusoidal topography h = hg cos kox.
With the nondimensional coordinates of (9), the bottom is then at Z =
eH(X), where H(X) = cos X. This sinusoidal topography has two symme-
tries,

(a) H(X)=H(—X), (b) HX+m)=—-H(X). (26)

Using (26) we can make some simplifications. The first symmetry in (26a)
suggests that ¢, = ¢_, and consequently we can fold the sum in (14) so
that n > 0. The second symmetry in (26b) indicates that 6,, defined by

o = 3710, (27)



is real. Taking advantage of these special sinusoidal simplifications, we by-
pass the general development in appendix A, and proceed directly from (14):
Using the definition (27) and 6,, = 6_,,

oo
cos X = —2ify + Z i"1geinecos X cosn X (28)

n=1

Two linear systems

Invoking the Bessel function identity,

™
; d
i"Jn(z) = / e 5T cos nx 2_m , (29)

r s

we integrate (28) over (—m, ) to obtain

300+ Jn(ne)d, =0. (30)

n=1

Again we use the Bessel identity (29) to project (28) onto cosmX. In this
way we obtain the linear system

Z anen = 51m ) (31)
n=1

where the matrix elements are
Bin(€) = Jn—m(ne) + (—1)" Jppan(ne) . (32)

Notice that {B,,(0)} is the identity matrix.

We began by truncating the linear system (31) and using standard tech-
niques to solve for {#,,}. There were two problems with this strategy. First,
as € — 1, (32) becomes badly conditioned. Second, even at moderate val-
ues of €, there are significant truncation errors so that the tail-end of the
computed 6,,’s has to be discarded.

A less obvious, but more rewarding, approach is to first rewrite (28) as

o0 o0
cos X = —%190 + % Z i"~10,en 4 % Z i"1g, e (33)
n=1 n=1
where
E=X —e€ecos X, n=X+ecosX. (34)



Now we project (33) onto the basis set {exp(im&)}. Once again, all the
integrals can be evaluated analytically using (29). The key intermediate
result is

LA | 2
iern/ o-inn—img 4§ 2n Joan [(m —n)e] . (35)

- 2r  n—m

In this fashion we find an another set of linear equations for the unknowns

{0n}:

S Tonnbn = o Jm(me). (36)
me
n=1
where
2(-=1)"n

Timn(€) = Omn, + Iman [(n —m)e] . (37)

n—m

The advantage of (36) over (31) is that Jp,n(€) is a diagonally dominant
matrix even at € = 1. Indeed, we get a useful approximate solution by taking
Tmn(€) = Oy in (36):

Jm(me).

me

Om(€) = O (e) =2 (38)
Because of diagonal dominance, (36) is well-conditioned for 0 < € < 1 and
there is no indication of truncation error. We make a comparison of the
approximation (38) with numerical solutions of (36) in figure 1. We trun-
cated the series at 200 in these numerical computations; several checks with
truncations as high as 1200 showed no significant differences. Provided that
€ < 1, 6, falls exponentially with n; at e = 1, 6,, ~ n~3/2 for n > 1. The de-
tailed large-n asymptotics can be deduced from the expansion of the Bessel
functions in én

The conversion rate again

Given {6, } from (31), we calculate the conversion rate using

_ poUghgko
N 4&)0

c VOV =)@~ f2) (). (39)

where the nondimensional function Y (e) obtained from (19) is

T(e) = i né? . (40)
n=1
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Figure 1: A comparison of the computed 6,,,’s with the approximation, ém(e)
in (38), at € = 0.5, 0.75 and 1. The numerical solution of (36) is indicated
by points and the approximation 0,, is the solid curves. The truncation of
(36) used the first 200 6,,’s.

Alternatively, from (23), we have

T(e)=(1- 1) nbBiy — 12> n,Bsn, (41)
n=1 n=1

where B, is defined in (32).

The two expressions for T in (40) and (41) give identical results if we
have an exact solution of the linear systems in (31) and (36). Thus, we can
make a nontrivial test of the accuracy of an approximate solution of (31) by
computing Y using these two different formulas and comparing the results.
Figure 2 shows this comparison over the subcritical range of e.

Solution using the ¢ < 1 expansion

If € is small, then we can solve (36) perturbatively and obtain the following
approximations:

2 3¢t 2478 3¢z 97€!
=1—- =4+ — 8 = — — 6 42
01 8+64+9216+O(6)’ 03 3 384+O(6) (42)
and
e 56 116 6 €3 5
=== = = — 4
02 5 22 281 O€’), 04 3+O(e) (43)

11
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Figure 2: Y(e) computed using three different methods. The Taylor series
method uses 61 terms in the series (44). The first matrix formula uses the
series in (40) and the second matrix formula uses the series in (41). The
three methods agree to within the linewidth of the graphs. upsilonFig.eps
& sinuConvWalsh.m

The conversion rate is then calculated from either (40) or (41):

€2 11e* 14365 451368 1707910

T(e) =14+ —
() - 4 * 96 * 2304 * 122880 * 7372800

+0 (%) . (44)

The result using 61 terms in the series (44), T (¢) (computed with the
assistance of MAPLE), is shown by the open circles in figure 2. At the
critical value, T(®V) (1) ~ 1.5561.
Denoting the coefficient of €%/ in (44) by T, (e.g., Y1 = 1/4) we find
empirically that
lim T; oc j7°/2. (45)
J—00
We conclude that the series (44) diverges if € > 1 and converges if e < 1. We
used Padé resummation to try to extrapolate the series (44) beyond € = 1;
the results were unsatisfactory and suggested that no solution existed in this
regime. Indeed, we see below how the linear, inviscid solution diverges at
€ = 1 and fails to exist beyond.
We exploit (45) to make a more accurate estimate of Y (1) using extrap-
olation:

2\ 60\
Yextrap = T (1) + Yoo > <7> ~ 1.558. (46)
j=61

12



We obtained an identical result from an extrapolation of the solutions of
(36) from finite to infinite truncation using the asymptotic dependence,
0,, ~ n~3/2. We conclude that critical (e = 1) sinusoidal topography has
a conversion rate that is about 56% greater than the rate calculated from
weak-topography approximation (¢ = 0). This is a rather modest topo-
graphic enhancement of the dependence on hg contained in the dimensional
factor on the right-hand side of (39).

Li (2002) has also calculated the conversion produced by a sinusoidal
topography using a terrain-following version of the Princeton Ocean model.
He finds that at e = 1 the conversion is greater than the weak-topography
result by a factor of 1.65. The difference with our result is probably due to
dissipative and discretization effects in the numerical model.

Visualization of the solution

From the computed 6,,’s we rebuild the dynamical variables. To visualize
the solution we use the buoyancy field:
N2
b= o [Z + aprx sinwot — @;x coswot)] , (47)
Ko

where

U[)hok%,u o erko
wo B wo '

a= (48)
Equation (47) shows that a necessary condition for our linearization is that
a < 1. Notice that a < 1 is not equivalent to € < 1 — the factor Upko/wo
is enough to ensure that « is small even if ¢ = O(1). Nonetheless, in order
to clearly display the main features of the wave field, we take rather large
values of a, such as a = 1/2.

Figure 3 shows the wavy buoyancy field at four values of e. The most
striking feature of these snapshots is the development of sharply collimated
beams in directions close to the critical rays for e — 1 (which are at 45°
in the dimensionless variables X and Z). The beams originate from the
points of the topography with maximum slope, and divide the flow into
square cells. Within each cell the fluid sloshes back and forth in a seiche-
like fashion. At e¢ = 1, the Fourier expansion of the buoyancy field has
coefficients n, ~ n~/2; this divergent Fourier series indicates that the
beams are singular. Thus, inviscid, linear theory formally breaks down at
criticality. Additional physics — either nonlinearity or dissipation — is
required to correctly formulate the problem for e > 1.

13



(a) e=0.2 (b) e=0.4

Figure 3: Snapshots of the buoyancy field computed from (47); the ampli-
tude parameter in (48) is a« = 1/2. (a) e = 0.2, (b) e = 0.4, (c) e = 0.6 (d)
€ = 0.8. wavyFig.eps, wavFigViz.m, wavFig.m
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(a) £=0.5 (b) €=0.8
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Figure 4: The sloshing buoyancy field at Z = 1.1¢; (a) ¢ = 0.5 (b) € = 0.8.
In both panels o = 1/2. We show a full tidal period and use an offset to
separate successive snapshots.slicel.eps

The sloshing of the fluid within the cells is illustrated in figure 4. The
curves display the buoyancy field at z = 11¢/10 (i.e., slightly above the
topographic crests at z = €). To show the time progression we vertically
offset the curves. The very steep gradients on either side of X = 0 in figure
4 correspond to the beams in figure 3.

Vertical cuts through the total buoyancy field above the point of max-
imum topographic slope (X = 7/2) are shown in figure 5. At ¢ = 0.5
(panel a) there are slight overturns which become much more pronounced
at e = 0.8 (panel b). This reversal of the vertical buoyancy gradient indicates
that static instability is possible if the tide is sufficiently vigorous.

The overturning condition

Based on figure 5 we expect that for fixed e there is a critical value of
the amplitude parameter, « in (48), at which overturns first appear. We
compute this value, say qover(€), by noticing that the maximum vertical
buoyancy gradient is at (X,Z) = (7/2,0) and at periodically congruent
points. It follows that the condition for overturning at some point in the

15
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Figure 5: Buoyancy above the point of maximum slope (X = 7/2); a = 1/2.
An offset is used to separate successive snapshots. Buoyancy reversals (i.e.,
negative values of vertical buoyancy gradient) are apparent. overturn.eps
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Figure 6: The function aqyer(€) in (49). uvy.eps
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tidal cycle is that

oo -1
a > Qoyer(€) = [Z@m + 1)292m+1] . (49)
m=0
Figure 6 shows agyer(€). As € — 1, aoyer(€) — 0. That is, even a very weak
tide induces static instability at critical slope. This is a consequence of the
singular buoyancy gradients which form all along the tidal beams in this
limit.

4 An isolated bump

Now we turn to the family of topographic profiles,
h = hgexp [—y(1 — cos koz)] . (50)

If v — 0 we recover the sinusoidal profile of section 3 (though with hy —
vho). On the other hand, if we write v = 1/k3¢? and let ko = 27/A — 0,
with ¢ fixed, then (50) is a periodically spaced sequence of well-separated
Gaussian bumps; the bump at the origin is

h & hoe * /2 . (51)

Our main concern in this section is this limit v — oo, in which we may
assess the conversion of a submarine ridge by the artifice of moving the
bumps further and further apart. To do this, we must demonstrate that
the total conversion in a single wavelength, AC, becomes independent of
the bump-spacing, A = 27 /kg, as A — oco. We provide the demonstration
below.

With the profile in (50) the nondimensional parameter € = phoko is no
longer a transparent indicator of the critical slope condition. Instead, we
notice that the maximum topographic slope is located at X,,, = kox,,, where

cos X, = % [\/ 14442 — 1} . (52)
The topography becomes critical if the maximum slope is equal to the ray
slope pu~! defined in (8). This condition defines the critical value of e:

e'y(l—cosXm)

UV

A convenient measure of the degree of criticality is then
€x = 6/5crit ) (54)
so that the topographic slope is critical at e, = 1.

(53)
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The weak topography limit

If ¢, is sufficiently small (that is, ‘weak’ topography) we solve (14) by ne-
glecting the term —|n|uh(z) in the exponential on the right-hand side. In
this case (14) is a Fourier series and we obtain:

Pt = e, (7), (55)

where I,, is the modified Bessel function. The right hand side of (55) is
the n’th coefficient in the Fourier series expansion of the nondimensional
topography H(X) = exp [-(1 — cos X)].

The conversion rate follows from (19):

poUZh2ko _
Cucat = P20 N2 — ) (h — ) =), (56)
where
Z(y) = 4ne™ > Z nIZ(y). (57)
n=1

The function =(vy) is shown in figure 7.
The formula (56) is equivalent to the results given by Bell (1975a) and
Llewellyn Smith and Young (2002). Indeed, we notice that

2 poUghi
lim —Cyeak =
kolinoo ]{30 cak 2w

VIV —w2) (R - f2). (58)

The result above agrees with the conversion rate of a single, weak Gaussian
bump given by Llewellyn Smith and Young (2002).

Finite amplitude topography

If €, is not small then we solve (14) numerically by again forming sets of
linear equations. The profiles still possess the symmetry in (26a) so that we
fold the sum as in (28). We obtain a system analogous to (36), save that
the matrix elements must be obtained by quadrature, and the 6,’s are no
longer real. Figure 8 shows the computed internal tide above well-separated
Gaussian bumps. Again the wave-field is characterized by sharply collimated
beams. Partly as a result, there is almost no wave activity between the
bumps. Thus we argue that solutions in figure 8 provide reliable estimates
of the conversions produced by isolated topographic features.

18



0.9F
0.8}
0.7t
o — - Y,
>N0~ — E()
2ost
©
o4t
0.3f
02t >«
01} T
o .
o > 4 6 8 10

Figure 7: The solid curve is the function Z(y) = 47 Y% nI2(y) in (56)
and (57). The dashed curve is the function To(y) defined in the discussion
surrounding (60). nog.eps
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Figure 8: Snapshots of the buoyancy field above well separated bumps;
v = 10 and o = 1/5. Panel (a) shows e, = 0.4 and panel (b) e, = 0.8.
burshotl.eps
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(a) Conversion rate for variousy (b) Conversion rate at ¢,=1
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Figure 9: Left panel: Y (e, ) in (59) with v =1, 2 .... 10 and 0 < e, < 1.
At fixed e, the conversion rate decreases as we approach the isolated-bump
limit by increasing . The left panel shows Y (1,); if 7 is greater than about
10, T(1,7) is independent of v. newbully.eps, newbully2.eps

We write the conversion rate for finite slopes in the form,
C= CweakT(e*a 7) ) (59)

where T(0,7) = 1 and Cyeax is defined in (56). The nondimensional function
T measures the degree to which the conversion rate is enhanced above the
weak-topography estimate in (56). Figure 9 shows the computed function
Y (€x,7y).

Once 7 is greater than about 10 the results in figure 9 are independent
of v. That is, there is no interference between adjacent Gaussian bumps.
At e, = 1 we estimated the limit v — oo using extrapolation and found
that Y(1,00) ~ 1.136. In other words, at critical slope, the conversion of
an isolated Gaussian bump is only 14% greater than the weak-topography
estimate.

We also computed the second-order terms in the expansion of the en-
hancement factor, Y (e, ) in (59), using the method of Appendix B. We
find that

T(ew,y) =14+ To(y)e2 + O(}), (60)

where Yo(7) is evaluated by summing a Bessel series (see figure 7). In
agreement with the sinusoidal limit in (44) we recover Y5(0) = 1/4. As
an indication of the asymptotic value for an isolated Gaussian we find
T2(100) = 0.0515.

20



The results of Baines (1972) are the only previous calculations for ridge-
like topography which are in the same e, = O(1) parameter range as those
in figure 9. It is difficult to make a useful comparison because Baines does
not factor out the dependence of the conversion on the factor h% contained
in Cyeak — see (56) and (59). Thus figure 6 of Baines shows mainly C oc h3;
without normalization by Cyeax it is impossible to detect the small correc-
tions to Cyeax contained in Y.

5 Fourier superposition and random topography

The main result of the previous sections is that the enhancement factor, T,
increases monotonically and modestly with e. Moreover, for the sinusoid, the
first effect of € # 0 is the quadratic term, €2/4, on the right hand side of (44).
The corresponding result for the Gaussian ridge is the term Y5(oc0) ~ 0.0515
in (60). These simple results seem to depend crucially on the form of the
topography. In the remainder of this paper we assess tidal conversion by
topographic profiles that more closely represent the rough ocean floor.

Random topography

We consider an ensemble of topographies, h = ho HX(X), where HX(X) de-
notes a realization (labelled by x) of the profile constructed by randomly

selecting the complex coefficients, HY = H,(lxr) + iHy(LXi), of the Fourier rep-
resentation,

HY(X) = Y HYe™ (61)

—Ne

n. is a spectral cut-off. We take HfLXT) and HT(LXi) to be independent and
normally distributed random variables with a Gaussian probability density
function. In other words, if n > 0, we pick H7(lxr) and H,(LXZ) from the density

P (H,(LX”) - exp (—H,SXT)Q /2ag> . (62)

uyes

Nl =
3N

We obtain the n < 0 coefficients from the reality condition, Hy = HX.
With this recipe, the RMS topographic height is given by

h%{Ms = Z S(n), (63)
n=1
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where S(n) = 4h20?2 is a discrete form of the power spectral density.

In the weak-topography limit, one takes ¢ = H;X and calculates the con-
version using (19)-(20). This allows a certain degree of headway in analysing
the effect of different choices for the ¢,,’s and n.. But once € is nonzero, this
analytic avenue is no longer open. Instead, we rely on a combination of
numerical computation and a small-e expansion analogous to (44).

For illustration, we use model topographic spectrum suggested by Bell
(1975b) and Goff & Jordan (1988):

[nz +n2]7q/2 , ifn <ne,

0, if n>ne.

S(n) = 4hio? = 4h} { (64)

The model spectrum (64) has four parameters: n., hg, n. and the exponent
q. According to Bell (1975b) and Goff & Jordan (1988), submarine topog-
raphy is characterized by a spectral exponent in the range 2 < g < 3. We
use the specific parameter settings,

ne=4, n.=32, q=5/2. (65)

We continue to use the definition € = hgkou. But, again, the critical
value of € is no longer unity. Instead, each realization of the topography
has a different maximum slope, say sfax. Thus we introduce a rescaled
parameter, defined as

X = esf oy - (66)
With this definition, a particular realization of the topography has a critical
slope when €} =

A few realizations

We solve (14) for ¢, using the method outlined in appendix A. Typical
results are shown in figures 10-12. With n. = 32, the topography is a
random superposition of 32 sinusoids. But in order to reliably represent the
wavefield over the range 0 < €, < 0.95, we retained 256 sinusoids in (13).
The upper panel of figure 10 shows a sample topographic profile. The lower
panel of figure 10 displays the corresponding periodogram of the topography
(nonzero only if 1 < n < 32), together with the computed coefficients, ¢,
of the wavefield at € = 0.03 (nonzero if 1 < n < 256). Figure 11 shows the
wavy buoyancy field above random topography of figure 10 with a particular
choice for the tidal amplitude (o = 0.01 in (48)).
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Figure 10: An example of a topographic profile constructed according to (61)
through (65). The upper panel shows H(X) (the solid curve) and Hx /10
(the dotted curve). The lower panel shows the spectral coefficients of the
topography and of the solution of (14). The topographic periodiogram is
limited to 1 < n < n. = 32. In this illustration ¢ = 0.03, ¢, = 0.44.
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Figure 11: An example of the wave field above a realization of the random
topography. In this illustration € = 0.03, €, = 0.44 and the amplitude in
(48) is @ = 0.01. The most striking features in the wavefield are the beams
emanating from the steepest slopes of the topography .randy2.eps
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According to (19) and (20), the conversion is proportional to the sum,

[e.9]

Dle.x)= Y Inllox(e)f. (67)

n=—oo

Figure 12 summarizes the conversion generated over fourteen different real-
izations. The dashed curves in the left-hand panel show the functions I'(e, x)
with x = 1,...,14. It is striking that the variations in conversion between
different realizations are much greater than the slight enhancements which
result from increasing € from 0 to 0.95. In the right-hand panel of figure
12 we show the enhancement factor,

T(e x) = T'(e,x)/T(0,x), (68)

plotted against the rescaled parameter €X defined in (66). At ef = 0.95
— the largest value we could reliably compute with 256 sinusoids in the
wavefield — the enhancement is only about 4 to 8% greater than the weak
topography result, obtained by putting ¢ ~ HX in (67).

The ensemble-averaged conversion rate to second order in ¢

With the spectral formulation, we can compute ensemble averages of the
conversion rate by Monte Carlo simulation. The average conversion rate,
estimated for 10* realizations over the range 0 < e < 0.01, is well fit by the
relation,

2
€)= 0 [N = )i~ ko
x (T'(0)) [L+ €Yo + O(eM)] (69)

with (I'(0)) ~ 2.5912 and Y3 ~ 12.316. These numbers can be predicted
analytically (and more usefully) using perturbation theory for small e.

The perturbation expansion is described in detail in Appendix B; briefly,
we expand (14) and compute the solution for ¢, by iteration to order €2.
We then insert the result into the formula for the conversion rate, ensemble
average using the probability density functions in (62), and find

) =298 (N2 )R - ko

2w
00 979 00 00
« ZnS(n)—i—'uTko SOS " A(m, mS(m)S(n) + 0(S?) |, (70)
n=1 m=1n=1
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Figure 12: Left panel: the 14 dashed curves show the sum I'(e) in (67)
calculated using 14 realizations of the topography. The maximum slope,
SNax, was typically of order 15 and so e, = 0.95 corresponds to maximum
values of € of about 0.06. The right panel shows the enhancement factor for
I'(e, x)/T'(0, x). In this right panel we
use the rescaled parameter €} defined in (66) as the abscissa. In both panels,
the solid curve shows the results expected from the small-e¢ perturbation

the fourteen topographies, T (x, €X)
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where A(m,n) = (m+n)(m? +n? — |m? —n?|). Bell’s (1975b) result is the
first term in the square bracket on the right hand side of (70), and expresses
the conversion rate, averaged over the topographic ensemble, in terms of the
topographic power spectral density. Our second-order correction is the final
double sum. For the parameter values in (65), one finds the result in (69)
with the same value for (I'(0)), and Yo ~ 12.3152.

The prediction 2.5912(1+12.3152¢?) from (70) is shown as the solid curve
in the left-hand panel of figure 12. In order to display this same prediction
in the right-hand panel, we must convert € to an “average €,”. To do this, we
computed the average of the maximum slopes using our ensemble of 10,000
topographic profiles; we found that (spax) &~ 14.7. Thus we define

(€x) = 14.7¢. (71)
so that the prediction in (69) is
T((e,)) =1+ 0.057(e,)?. (72)

The parabola in (72) is the solid curve in the right-hand panel of figure 12.

6 Conclusions and discussion

Our focus in this work has been the conversion rate of energy from the
barotropic tide into internal gravity waves at topography with finite slope.
The results indicate that Bell’s weak-topography approximation provides
reliable estimates of this conversion. For example, we have shown that
for an isolated Gaussian ridge the conversion rate at critical slope is only
14% greater than the weak-slope result obtained by Llewellyn Smith and
Young (2002) using Bell’s approach. In the case of random topographies,
having a power spectral density with a slope of —2.5, there are factor-of-two
fluctuations in conversion rate between different topographic realizations.
These sample fluctuations are much greater than the 4 to 8% enhancement
above the weak-topography estimate occurring as the amplitude of a single
realization is increased (see figure 12). This result suggests that the major
uncertainty in estimating ocean conversion rates is adequate knowledge of
ocean topography.

St. Laurent & Garrett (2002) have argued that, because the Richardson
number of the internal tide is large, vigorous shear instability will not typ-
ically occur. Thus, even given significant energy conversion, there are still
important questions surrounding the degradation of the internal tide into
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small-scale mixing (see also Polzin 2002). Our visualizations of the radiated
wave-field show sharply collimated beams leaving the point of maximum to-
pographic slope; density overturns and mixing might occur in these beams.
Indeed, as the critical slope is approached, even a very weak barotropic tide
is sufficient to produce overturns at some phase of the tidal cycle (see figure
6). In other words, while increasing e, does not greatly enhance the conver-
sion rate, steeper topographic slopes do produce smaller spatial scales in the
radiated waves. Thus, a key effect of large topography may be to destabilize
the internal tide through the formation of the small-scale features evident
in our visualizations of the wave field.

At e, = 1, our solutions become singular via the appearance of diverging
buoyancy gradients. This signifies a breakdown of inviscid, linear theory. It
seems that useful results for the supercritical case must consider the physical
processes (nonlinearity and viscosity) which heal the singularity that attends
the transition at e, = 1. Nevertheless, in all the cases we studied, there is
no indication of dramatic changes in the conversion rate at the critical point
€x = 1. Moreover, the numerical results of Li (2002) and Khatiwala (2002)
suggest that conversion above supercritical topography either saturates or
begins to decline with increasing e,. If these results are reliable indications
of what happens in the supercritical regime, then the weak topography ap-
proximation is very useful tool over the entire range of e,.
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A Reduction of equation (14) to a linear system

We rewrite (14) in the form
H(X) = ¢o+ Y _dmexp[imé] + D dmexp[—imn] , (73)
m=1 m=1

where ém =¢_, and

E=X—-€eH(X), n=X+eH(X). (74)

28



Guided by the experience gained from studying sinusoidal topography, we
project (73) on exp(—in&) and exp(inn), to obtain the linear system,

Z Anmﬁgm + ¢n = @n,
m=1

i Apmbm + b = ton . (75)
m=1
In (75)
wp(€) = feméH(X)§
= i eminé i—f : (76)

and @y (€) = w;(—€). In (76), ¢ indicates an integral over a period, say
from X = —7 to 7.
The matrices in (75) are

Anm(e) — %e—ing—imn %

o’

. . o d
Apne) = 74 gmime 1. (77)

The diagonal elements of these matrices can be further simplified to
[Amm) Amm] = —2ime [HZm’ Hgm] ’ (78)

where H), is the coefficient of exp(ipX) in the Fourier series representation
of H(X) (e.g., as in (61)). The off-diagonal terms of A,,,, and A, can be
expressed concisely in terms of the matrix,

. : dX
Ko (€) = ]{ im0 2 (79)
We find that
2m
Aun() = 2 Km(e), (m#). (30)
and
Aun(€) = 22Kt (—€) = 2 Kl() = — A (0). (81)
m—n m—n



For the calculations in section 5 we numerically computed w,, and A,,, from
(76), (79) and (80) using X (rather than &) as the variable of integration.
Equation (81) then enables one to efficiently obtain the matrix A(e) from
the transpose-conjugate of A(e).

The system (75) can be reduced to:

oo o0

an - Z Z AnmAmqup = Wn — Anm'@m (82)

m=1p=1
by eliminating the hatted variables. After truncating and solving (82) for
¢n, one can then directly obtain ¢,, from the second equation in (75).
B The second-order correction

This appendix summarizes the calculations leading to the second-order cor-
rection to Bell’s formula in (70). We begin by expanding (14) in powers of
€

, , , 1
H(X) _ ZgbnemXeankH(X) — Z¢nean [1 . Z‘n|6H o §n2e2H2 + ..
n n

(83)
We solve this equation iteratively
On =H,, + i€ Z |n — p|Hp,Hp—p
P
1
+5¢2 ) [(n—p—a)* = 2|(n—p—aq)(n— )| HyHyHnpq. (34)
P
Substituting into (20) we find
D= S 0l ol + i€ 3 [n(n — p) [Hy o H — Hy H H)
n n,p
+ € Z In(n —p)(n — Q)’HpH;Hn—pH;—q
n’p?q
62 2 * * TT* LT
+ o Z In+p+qlln” = 2In(n + p)|[[(HyHgHn Hy, g + HyHy HyHypyg) -
n7p7q
(85)
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We ensemble average:

O Il Ho?) =4 no?. (86)

n>0

The O(e) term in I' is uncorrelated and vanishes. The hard part is the
fourth-order correlation: To compute this, we evaluate two terms separately.
First, we have (H,HyHy,,—pH;;,_ ). In order for the correlation not to vanish,
the average must break up into either a true fourth-order correlation (in
which all the H;’s have the same index, modulo sign), or two independent
pairs (second-order correlations, with paired indices). The true fourth-order
correlation arises for p = +¢q, p = £(n — p), and p = +(n — ¢q). These
conditions are consistent only if 2p = 2¢ = n, bearing in mind that n = 0 is
not allowed. The possible paired second-order correlations are

{ p=+q } {pzi(n—p)} and {p:i(n—Q)}_

n—p==+(n-qf’ g==+(n—-q)J’ q==+(n—p)
(87)

Again, we exclude many of these possibilities by demanding consistency and

by arguing that p, ¢ and n cannot vanish. Only p = ¢ and n = p + ¢ give
independent pairs. Thus,

<HpH;Hn—pH;fq> :<’Hp|2><’Hn—p’2>5p7q + <’Hp|2><’Hq|2>5n,p+q
+ <|Hp|4>5p,q52p,n - 2<|Hp|2>25p,q52p7n ) (88)
where the final term represents the twice overcounted fourth-order correla-

tion which not should not appear as either of the independent pairings. This
contribution to (I') can then be written in the form,

2 Ip+al(lal + p))?op07, (89)
pq

given that (|H,|*) = 80;4,.
A similar computation provides the other fourth-order term:
<HPH(1H”H;:+p+q> :<|Hp‘2><|Hn|2>5p7—q
+ ([ Hp ) (| Hy[*)0p,—n + (| Hp|*) (| Ho|*)3g,—n

+ (1 Hpl*) = 2(1Hp|*)*) (p,~gOpn + 8p—g0p—n + p.—nTp.q) -
(90)
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(the illegal pairs are for p = £n in the first term, p = +¢ in the second, and
p = £q in the third, which leads to the subtracted term). The associated
contribution to I is

2 lla* + 1o + 2lpal(p| + lal) — 2lp + al(lp| + lal)*lopo;  (91)
p,q

The O(e?) term is therefore

413+l +0° —1p* - ¢llogos. (92)
P,4>0
Hence,
=) dnop+¢ > 4p+qld +p° - p* = llojor. (93)
n>0 p,q>0

Using S(n) = 4h30?2 to eliminate o2, and substituting I into (19), we obtain
the expression for the ensemble-averaged conversion to O(e?) given in (70).
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