GSFlib,

the Generic Sensor Format

Library

30 June 2006
Prepared For:

Naval Oceanographic Office

Stennis Space Center, MS 39522

Prepared By:

Science Applications International Corporation

221 Third Street

Newport, RI 02840

GSFlib, the Generic Sensor Format Library

	REVISIONS

	Rev
	Date
	Pages Affected
	Remarks

	0
	04 SEP 1998
	All
	Baseline Version

	1
	12 NOV 1998
	All
	Updated specification to reflect changes due to implementations through GSF-v1.07.

	2
	07 OCT 1999
	All
	Updated specification to reflect changes due to implementations through GSF-v1.08.

	3
	12 OCT 1999
	All
	Updated specification to reflect changes due to implementations through GSF-v1.09.

	4
	20 OCT 2000
	All
	Updated specification to reflect changes due to implementations through GSF-v1.10

	5
	16 JAN 2001
	All
	Updated specification to reflect changes due to implementations through GSF-v1.11

	6
	29 MAR 2002
	Various
	Updated Library Documentation to reflect changes made for GSF version 2.0. Including: (c++ support, and support for Simrad EM120)

	7
	08 JUL 2002
	Various
	Updated Library Documentation to reflect changes made for GSF version 2.01.

	8
	20 JUN 2003
	Various
	Updated Library Documentation to reflect changes made for GSF version 2.02, including support for bathymetric receive beam time series intensities.

	9
	29 DEC 2004
	Various
	Updated Library Documentation to reflect changes made for GSF version 2.03.

	10
	30 JUN 2006
	Various
	Updated Library Documentation to reflect changes made for GSF version 2.04.

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

Table of Contents

1-1

1. INTRODUCTION

1.1 Implementation Concept
1-1

1.2 Development History
1-3

1.3 Restrictions and Limitations
1-5

1.4 References
1-6

1.5 Distribution
1-6

1.6 Sensors Supported
1-6

1.7 Computer Platforms Supported
1-7

1.8 Documentation Conventions
1-7

2. FUNCTION DEFINITIONS
2-1

2.1 Access Functions
2-1

2.1.1 Function: gsfOpen
2-1

2.1.2 Function: gsfOpenBuffered
2-2

2.1.3 Function: gsfRead
2-4

2.1.4 Function: gsfWrite
2-5

2.1.5 Function: gsfSeek
2-6

2.1.6 Function: gsfClose
2-7

2.2 Utility Functions
2-8

2.2.1 Function: gsfCopyRecords
2-8

2.2.2 Function: gsfFree
2-8

2.2.3 Function: gsfPutMBParams
2-9

2.2.4 Function: gsfGetMBParams
2-9

2.2.5 Function: gsfLoadScaleFactors
2-11

2.2.6 Function: gsfGetScaleFactors
2-12

2.2.7 Function: gsfLoadDepthScaleFactorAutoOffset
2-13

2.2.8 Macro: gsfTestPingStatus
2-14

2.2.9 Macro: gsfSetPingStatus
2-14

2.2.10 Macro: gsfClearPingStatus
2-15

2.3 Information Functions
2-15

2.3.1 Function: gsfPrintError
2-16

2.3.2 Function: gsfStringError
2-16

2.3.3 Function: gsfIndexTime
2-16

2.3.4 Function: gsfPercent
2-17

2.3.5 Function: gsfGetNumberRecords
2-18

2.3.6 Function: gsfGetSwathBathyBeamWidths
2-18

2.3.7 Function: gsfGetSwathBathyArrayMinMax
2-19

2.3.8 Function: gsfIsStarboardPing
2-19

2.3.9 Function: gsf_register_progress_callback
2-19

3. ERROR CODE DESCRIPTIONS
3-1

4. C-LANGUAGE DEFINITIONS OF STRUCTURES USED BY GSFLIB
4-1

4.1 Definition of GSF Data Records
4-1

4.1.1 Header Record
4-1

4.1.2 Swath Bathymetry Ping Record
4-1

4.1.3 Single-beam Bathymetry Record
4-10

4.1.4 Sound Velocity Profile (SVP) Record
4-11

4.1.5 Processing Parameters Record
4-11

4.1.6 Sensor Parameters Record
4-13

4.1.7 Comment Record
4-13

4.1.8 History Record
4-13

4.1.9 Navigation Error Record
4-13

4.1.10 Swath Bathymetry Summary Record
4-14

4.1.11 Attitude Record
4-14

4.2 Supporting Data Structures and Definitions
4-14

4.2.1 Record Identifier
4-14

4.2.2 Time Structure
4-14

4.2.3 Null values used to represent missing data
4-15

4.2.4 Positioning System Type Codes
4-15

List of Figures

1-2

Figure 1-1 GSFLib Functions

List of Tables

3-1

Table 3-1 GSF Errors

1. Introduction

The Generic Sensor Format (GSF) library contains functions for creating and accessing multibeam sonar data that have been stored in a generic byte stream format corresponding to the sequential encapsulation described in the Generic Sensor Format Specification. This specification defines a set of ten record types that are used to store bathymetric data. This document describes the library that supports GSF format version 2.01.

This document is derived from documentation within the GSFlib source code, primarily the header file, gsf.h. The intent is to present that information in a more accessible, organized form and to describe the library’s design and implementation. Because the information presented herein is derived from the source code, the code itself should be the primary reference for application developers.

1.1 Implementation Concept

The GSF library (gsflib) is a “thin” layer of software that transfers data between the data format described in the specification and a standardized set of data structures. This is necessary because the specified data format is a byte stream of data containing records of arbitrary length that have been extensively optimized for compactness and is not easily manipulated. The organization of the data structures populated by GSFlib is for the developer’s convenience and presents the data in a uniform manner with a consistent set of physical units. There is a one-to-one correspondence between the record types defined in the specification and the data structures made available through the library.

Figure 1-1 illustrates the GSF library functions. There are three functional categories in the library routines: those that provide access to the data when stored on disk, those that perform utility operations and those that provide information about the data. The access functions, which translate between the memory-based data structures and the byte-stream data format, include operations to open and close, read and write to data files and seek functions to access data by time and record type.

Utility functions include routines that copy data structures, free memory, translate processing parameters into a more accessible form, and provide the programmer with access to the scale factors used to optimize the storage to ping arrays. Processing parameters document the extent to which data have been processed and the values of any correctors or offsets that have been applied to the data. Access to processing parameters is necessary when they are required or need to be updated. Scale factor information defines how the data are packaged into the GSF data files. They are automatically applied to read operations and need to be manipulated only when the application is writing data to disk

Informational functions provide a variety of facts about the data. These functions provide capabilities such as:

· describing error conditions,

· returning the relative location of the file pointer within the file,

· providing counts of the number of records of a given type,

· discriminating between starboard and port-directed beams in dual transducer configurations and

· Providing beam widths for the data being processed.

It should be noted that for some sonars this beam width information is not stored within the data but is provided by lookup tables within the library source code.

The GSF byte stream is a sequentially oriented file but the library provides for direct access to the data via an auxiliary index file. Upon opening a data file for direct access, the disk is inspected for an index file that corresponds to the data file being opened. If there is no index file, one is created. The index file provides direct access to any record in the data file. The creation and maintenance of the index file is transparent to both the application developer and to the user. The normal sequence of events is for the data file to be written sequentially and for the index file to be created by the first program that needs to examine it using direct access. At this time, the index file format is not a part of the GSF data specification but is defined only within the library.

Figure 1-1 GSFLib Functions
1.2 Development History

J. Scott Ferguson and Brad Ward of SAIC and Daniel Chayes of the Naval Research Lab developed the GSF specification. The Defense Mapping Agency supported its development and it was first published on 31 March 1994. The primary author of the GSF library is John Shannon Byrne of SAIC and was first released on 3 May 1994. The U.S. Naval Oceanographic Office (NAVOCEANO) and Naval Sea Systems Command (NAVSEA) supported the development of this library. NAVOCEANO also provided significant direction and feedback during the library’s development and initial deployment. After deployment, the GSF Working Group was formed. This group discusses issues relative to the specification and the library, provides direction for GSF development and acts as a configuration control board to accept updates. The working group corresponds via a mailing list maintained by NAVOCEANO. Requests to be added to the mailing list can be sent to <gsf@navo.navy.mil>. Both the specification and the GSF library are maintained under configuration control by NAVOCEANO.

The library’s release history is as follows:

	Release Date
	Version ID
	Description

	03 May 1994
	GSF-v01.00
	Initial Release.

	14 Aug 1995
	GSF-v01.01
	Direct and sequential access now works through common gsfRead and gsfWrite API. All pointers to dynamically allocated memory are now maintained by the library.

	22 Dec 1995
	GSF-v01.02
	Added gsfGetMBParams, gsfPutMBParams, gsfIsStarboardPing, and gsfGetSwathBathyBeamWidths. Also added GSF_APPEND as a file access mode, and modified GSF_CREATE access mode so that files can be updated (read and written).

	20 Aug 1996
	GSF-v01.03
	Added support for single beam echosounders. Added gsfStringError function.

	24 Mar 1997
	GSF-v01.04
	Added support for RESON 8101 sonar and enhanced support for “classic” Seabeam sonar. Increased the maximum record size from 4 kbytes to 32 kbytes.

	04 Sep 1998
	GSF-v01.06
	Added support for SeaBeam 2100 series multibeam sonars and for Elac Bottomchart MkII sonars. Minor enhancements to code portability.

	12 Nov 1998
	GSF-v01.07
	Defined a new GSF navigation error record gsfHVNavigationError that replaces the currently defined navigation error record gsfNavigationError. Modified encode of the existing error array subrecords (depth_error, across_track_error, and along_track_error) as two byte quantities. Added two new array subrecords to the GSF swath bathymetry ping data structure, namely horizontal error and vertical error. Modified the gsfPrintError function so that it calls the gsfStringError function. gsfStringError function expanded so that all defined error conditions are handled.

	07 Oct 1999
	GSF-v01.08
	Added support for Simrad multibeam models EM-3000, EM-1002 and EM-300, as well as added a new compressed SASS (gsfCmpSassSpecific) specific data structure. Added two new functions gsfGetSwathBathyArrayMinMax and gsfLoadDepthScaleFactorAutoOffset in support of signed depth. Also added processing in the gsfGetSwathBathyBeamWidths function to return the beam width values specified within the EM-3000 series data formats. Increased the GSF_MAX_PROCESSING_PARAMETERS macro from sixty-four to one hundred and twenty-eight and the GSF_MAX_SENSOR_PARAMETERS macro from thirty-two to one hundred and twenty-eight. Modified gsfPutMBParameters function to allow processing parameters to contain the appropriate designator for the vertical datum.

	12 Oct 1999
	GSF-v01.09
	Updated the contents of the compressed SASS (gsfCmpSassSpecific) specific subrecord. Added a comment block to the compressed SASS specific subrecord definition to describe the mapping between SASS and GSF data. Included annotations informing that the gsfCmpSassSpecific data structure is intended to replace the gsfTypeIIISpecific data structure in a future release. All new coding should use the gsfCmpSassSpecific data structure.

	20 Oct 2000
	GSF-v01.10
	Enhancements for index file portability between big and little endian-based host machines. Updates to source code for minor bug fixes.

	16 Jan 2001
	GSF-v01.11
	Updated the contents of the gsfEM3RunTime data structure to include separate elements for port and starboard swath width and for port and starboard coverage sectors. Updated the contents of the gsfEM3RunTime data stucture to include the HiLo frequency absorption coefficient ratio. Added checks for LINUX specific defines before defining timespec structure. Added support for more tidal datums. Fixed errors in decoding of HV Navigation Error records.

	29 Mar 2002
	GSF-v02.00
	Modified to support access from c++ applications, address file sharing problems on multiprocessor Linux configurations, resolve compile macros used for Win32, resolved several minor bug fixes, remove unused automatic variables, add support for the Simrad EM120 sonar, reserve subrecord IDs for the latest datagram format for Reson 8101, 8111, 8125, 8150, and 8160 sonar systems, and ensure that a string terminating NULL is applied when strncpy is used.

	08 Jul 2002
	GSF-v02.01
	Added gsfAttitude record to allow storage of full time series of attitude data. Added a new sensor specific subrecord for Reson 8101, 8111, 8125, 8150, and 8160 sonar systems. Expanded the gsfMBOffsets structure to include motion sensor offsets. Updated gsfGetMBParams and gsfPutMBParams to encode and decode new motion sensor offsets in the process_parameters record.

	20 Jun 2003
	GSF-v02.02
	Added support for bathymetric receive beam time series intensity data. Added sensor-specific single-beam information to the multibeam sensor specific subrecords.

	29 Dec 2004
	GSF-v02.03
	Fixed memory leaks, fixed encoding and decoding of 1-byte BRB intensity values, updated gsfLoadDepthScaleFactorAutoOffset to vary the offset interval based on precision, added beam spacing to Reson 8100 sensor-specific subrecord, reserved sensor Ids for Simrad EM3002, EM3002D, and EM3000D, added sensor specific support for Reson Navisound singlebeam, added copy of vertical_error and horizontal_error arrays in gsfCopyRecords, and added definitions for RTG position type to gsfHVNavigationError record.

	30 Jun 2006
	GSF-v2.04
	Added support for EM121A data received via Kongsberg SIS. Added support for EM3000D and EM3002D in gsfIsStarboard ping function. Added new service to allow calling programs to register a callback function for reporting progress of index file creation. Updated gsfCopyRecords to copy all HV Nav Error data from source to target data structure. Updates to support compilation on 64-bit architectures, and compilation on MAC OSX operating system.

	
	
	

1.3 Restrictions and Limitations

The following restrictions or limitations apply to the GSFlib code.

· The library assumes the host computer uses the ASCII character set.

· The library is written in the C language and assumes that the type short is 16 bits, and that the type int is 32 bits.

· The library provides access to individual data files only and does not support the development of metadata or transmittal files. It should be noted, however, that many of the data items recorded in the files’ summary and parameter records may be used to populate metadata records.

· Data compression flags are maintained within the ping scale factors subrecord but data compression is not supported.

· The index function creates separate index files that make assumptions about the file naming convention. The library names the index file the same as the data file name but replaces the third to the last character with an “n”. This is because the files are expected to be named using a file naming convention adhered to within NAVOCEANO for data collected by their Integrated Survey Systems (ISS and ISS-60). No protection exists for the case where a GSF data file already has an “n” in the third to the last character.

· Time is recorded in precise form only with fractional seconds included in all time fields. The beginning of the epoch is required to be midnight of 1 January 1970, thus data recorded prior to this date is not supported.

· The only horizontal datum supported is “WGS-84”; supported tidal datums include “UNKNOWN”, “MLLW”, “MLW”, “ALAT”, “ESLW”, “ISLW”, “LAT”, “LLW”, “LNLW”, “LWD”, “MLHW”, “MLLWS”, and “MLWN”. This is a limitation with the data structure gsfMBParams which represents horizontal and vertical datums as integers. Only these datums have integer definitions in gsf.h.
· Data record compression is not supported.

· The current version of GSFlib library does provide text string translations for all error code returns; however, all definitions do not have unique values.

· The name of the gsfSwathBathySummary record implies that the data in this structure is specific to the Swath Bathy Ping Record. This is not the case; the data structure is implemented to represent the Summary Record as defined in the specification.

· The index file is not portable between 32-bit and 64-bit computers.

1.4
References

Generic Sensor Format Specification, 16 January 2001, Prepared for: Naval Oceanographic Office, Stennis Space Center, MS, by Science Applications International Corporation, 221 Third Street, Newport RI.

1.5
Distribution

The information in this document and the GSF library source code itself is unclassified and may be distributed without restriction.

1.6
Sensors Supported

Multibeam echosounders

· Elac Bottomchart Mk II

· RESON SEABAT 9000 Series

· RESON 8101

· RESON 8111

· RESON 8125

· RESON 8150

· RESON 8160

· SeaBeam 2100 series

· SEAMAP

· Simrad EM100

· Simrad EM121

· Simrad EM300

· Simrad EM950

· Simrad EM1000

· Simrad EM1002

· Simrad EM3000 and EM3000D

· Simrad EM120

· Simrad EM3002 and EM3002D

Multibeam Archival Formats

· Compressed SASS

Single-beam Echosounders

· Odom Echotrac

· ODEC Bathy2000

· Reson Navisound

Single-beam Archival Formats

· MGD77

· BDB

· NOS HDB

1.7
Computer Platforms Supported

The following platforms use the GSF library:

· HP Series 7000 workstations running HPUX 9.0, 10.0, or 10.20

· PCs running IBM OS/2, versions 2.0, 3.0 and 4.0, LINUX, and WINDOWS NT/2000

· Digital Alpha Workstation running Digital UNIX, version ***

· Silicon Graphics running IRIX 6.3

· Sun ***

1.8
Documentation Conventions

· References to GSF functions are bolded.

· References to GSF data structures or definitions are italicized.

· Function prototypes, function arguments and other references to C-language source code are in Courier type (e.g., int)

2. Function Definitions

The library function definitions in this section are in three functional categories, those used to access data, those used to perform utility functions, and those that provide information about the data.

2.1 Access Functions

Access functions include those used to open and close data files, read and write data and place the file pointer as various locations within the file.

2.1.1 Function: gsfOpen

Usage:

int gsfOpen(const char *filename,

 const int mode ,

 int *handle)

Description:

This function attempts to open a GSF data file. If the file exists and is opened for read-only or for update, the GSF header is read to confirm that this is a GSF data file. If the file is opened for creation, the GSF header containing the version number of the software library is written into the header. This function passes an integer handle back to the calling application. The handle is used for all further access to the file. gsfOpen explicitly sets stream buffering to the value specified by GSF_STREAM_BUF_SIZE. The internal file table is searched for an available entry whose name matches that specified in the argument list, if no match is found, then the first available entry is used. Up to GSF_MAX_OPEN_FILES files may be open by an application at a time.

If a file is opened as GSF_READONLY_INDEX or GSF_UPDATE_INDEX a corresponding index file is expected to exist. If the index file exists, its contents are examined to determine if the GSF file has increased in size since the index file was created. If not, subsequent file accesses use the index file. If the index file does not exist, the gsfOpen function automatically creates it. If the GSF file is larger than that recorded in the index file, the index file is updated to correspond to the new records in the GSF file.

Inputs:

	filename
	a fully qualified path to the GSF file to be opened

	mode
	may have the following values:

GSF_READONLY open an existing file for read-only access

GSF_UPDATE open an existing file for reading and writing

GSF_CREATE create a new GSF file

GSF_READONLY_INDEX open an existing file for read only access with an index file

GSF_UPDATE_INDEX open an existing file for reading an writing with an index file

	handle
	a pointer to an integer to be assigned a handle which will be referenced for all future file access.

Returns:

This function returns zero if successful, or -1 if an error occurred. gsfError is set to indicate the error.

Error Conditions:

GSF_BAD_ACCESS_MODE

GSF_FILE_SEEK_ERROR

GSF_FLUSH_ERROR

GSF_FOPEN_ERROR

GSF_READ_ERROR

GSF_SETVBUF_ERROR

GSF_TOO_MANY_OPEN_FILES

GSF_UNRECOGNIZED_FILE

2.1.2 Function: gsfOpenBuffered

Usage:

int gsfOpenBuffered(const char *filename,

 const int mode,

 int *handle,

 int buf_size)

Description:

This function attempts to open a GSF data file. If the file exits and is opened read-only or for update, the GSF header is read to confirm that this is a GSF data file. If the file is opened for creation, the GSF header containing the version number of the software library is written into the header. This function passes an integer handle back to the calling application. The handle is used for all further access to the file. gsfOpenBuffered explicitly sets stream buffering to the value specified by the buf_size argument. The internal file table is searched for an available entry whose name matches that specified in the argument list, if no match is found, then the first available entry is used. Up to GSF_MAX_OPEN_FILES files may be open by an application at a time. gsfOpenBuffered performs identical processing to gsfOpen except that the caller is allowed to explicitly set the I/O buffer size.

If a file is opened as GSF_READONLY_INDEX or GSF_UPDATE_INDEX, a corresponding index file is expected to exist. If the index file exists, its contents are examined to determine if the GSF file has increased in size since the index file was created. If not, the index file is used for subsequent file accesses. If the index file does not exist, the gsfOpenBuffered function automatically creates it. If the GSF file is larger than that recorded in the index file, the index file is updated to correspond to the new records in the GSF file.

Inputs:

	filename
	a fully qualified path to the GSF file to be opened

	mode
	may have the following values:

GSF_READONLY open an existing file for read-only access

GSF_UPDATE open an existing file for reading and writing

GSF_CREATE create a new GSF file

GSF_READONLY_INDEX open an existing file for read-only access with an index file

GSF_UPDATE_INDEX open an existing file for reading an writing with an index file

	handle
	a pointer to an integer to be assigned a handle which will be reference for all future file access.

	buf_size
	an integer buffer size in bytes.

Returns:

This function returns zero if successful, or -1 if an error occurred. gsfError is set to indicate the error.

Error Conditions:

GSF_BAD_ACCESS_MODE

GSF_FILE_SEEK_ERROR

GSF_FLUSH_ERROR

GSF_FOPEN_ERROR

GSF_READ_ERROR

GSF_SETVBUF_ERROR

GSF_TOO_MANY_OPEN_FILES

GSF_UNRECOGNIZED_FILE

2.1.3 Function: gsfRead

Usage:

int gsfRead(int handle,

 int desiredRecord,

 gsfDataID *dataID,

 gsfRecords *rptr,

 unsigned char *buf,

 int max_size)

Description:

gsfRead supports both direct and sequential access. If the file is opened for sequential access, this function reads the desired record from the GSF data file specified by the handle. Setting the desiredRecord argument to GSF_NEXT_RECORD reads the next record in the data file. The desiredRecord record may be set to specify the record of interest. In this case, the file is read, skipping past intervening records. After locating the desired record, it is read and decoded from external to internal form. If the data contains the optional checksum, the checksum is verified. All of the fields of the gsfDataID structure, with the exception of the record_number field will be loaded with the values contained in the GSF record byte stream. For sequential access, the record_number field is undefined. The buf and max_size arguments are normally set to NULL, unless the calling application requires a copy of the GSF byte stream.

If the file is opened for direct access, then the combination of the recordID and the record_number fields of the dataID structure are used to uniquely identify the record of interest. The address for this record is retrieved from the index file, which was created on a previous call to gsfOpen or gsfOpenBuffered. If the record of interest is a ping record that needs new scale factors, the ping record containing the scale factors needed is read first, and then the ping record of interest is read. Direct access applications must set the desiredRecord argument equal to the recordID field in the gsfDataID structure.

Inputs:

	Handle
	the handle to the file as provided by gsfOpen

	DesiredRecord
	the desired record or GSF_NEXT_RECORD

	DataID
	a pointer to a gsfDataID structure to be populated for the input record.

	Rptr
	a pointer to a gsfRecords structure to be populated with the data from the input record in internal form.

	Buf
	an optional pointer to caller memory to be populated with a copy of the GSF byte stream for this record.

	max_size
	an optional maximum size to copy into buf

Returns:

This function returns the number of bytes read if successful or -1 if an error occurred. gsfError is set to indicate the error.

Error Conditions:

GSF_ATTITUDE_RECORD_DECODE_FAILED

GSF_BAD_FILE_HANDLE

GSF_CHECKSUM_FAILURE
GSF_COMMENT_RECORD_DECODE_FAILED
GSF_FILE_SEEK_ERROR

GSF_FLUSH_ERROR
GSF_HEADER_RECORD_DECODE_FAILED
GSF_HISTORY_RECORD_DECODE_FAILED

GSF_HV_NAV_ERROR_RECORD_DECODE_FAILED
GSF_INSUFFICIENT_SIZE
GSF_NAV_ERROR_RECORD_DECODE_FAILED

GSF_PROCESS_PARAM_RECORD_DECODE_FAILED
GSF_READ_ERROR
GSF_READ_TO_END_OF_FILE
GSF_RECORD_SIZE_ERROR
GSF_SENSOR_PARAM_RECORD_DECODE_FAILED
GSF_SUMMARY_RECORD_DECODE_FAILED

GSF_SVP_RECORD_DECODE_FAILED
GSF_UNRECOGNIZED_RECORD_ID
GSF_UNRECOGNIZED_SUBRECORD_ID

2.1.4 Function: gsfWrite

Usage:

int gsfWrite(int handle,

 gsfDataID *id,

 gsfRecords *rptr)

Description:

gsfWrite encodes the data from internal to external form, and then writes the requested record into the file specified by handle, where handle is the value returned by gsfOpen. The record is written to the current file pointer for handle. An optional checksum may be computed and encoded with the data if the checksum flag is set in the gsfDataID structure. If the file is opened for sequential access (GSF_CREATE, or GSF_UPDATE) then the recordID field of the gsfDataID structure is used to specify the record to be written.

When opening the file for direct access (GSF_UPDATE_INDEX), the combination of the recordID and the record_number fields of the gsfDataID structure uniquely identify the record to write. The address of the record of interest is read from the index file and the file pointer is moved to this offset before the record is encoded and written to disk.

Inputs:

	handle
	the handle for this file as returned by gsfOpen

	id
	a pointer to a gsfDataID containing the record ID information for the record to write.

	rptr
	a pointer to a gsfRecords structure from which to get the internal form of the record to be written to the file.

Returns:

This function returns the number of bytes written if successful, or -1 if an error occurred. gsfError is set to indicate the error.

Error Conditions:

GSF_ATTITYDE_RECORD_ENCODE_FAILED
GSF_BAD_FILE_HANDLE
GSF_COMMENT_RECORD_ENCODE_FAILED
GSF_FILE_SEEK_ERROR
GSF_FLUSH_ERROR

GSF_HEADER_RECORD_ENCODE_FAILED
GSF_HISTORY_RECORD_ENCODE_FAILED

GSF_HV_NAV_ERROR_RECORD_ENCODE_FAILED
GSF_NAV_ERROR_RECORD_ENCODE_FAILED

GSF_PROCESS_PARAM_RECORD_ENCODE_FAILED
GSF_SENSOR_PARAM_RECORD_ENCODE_FAILED
GSF_SINGLE_BEAM_ENCODE_FAILED

GSF_SUMMARY_RECORD_ENCODE_FAILED

GSF_SVP_RECORD_ENCODE_FAILED
GSF_UNRECOGNIZED_RECORD_ID
GSF_UNRECOGNIZED_SENSOR_ID

GSF_WRITE_ERROR

2.1.5 Function: gsfSeek

Usage:

int gsfSeek(int handle,

 int option)

Description:

This function moves the file pointer for a previously opened GSF file.

Inputs:

	handle
	the integer handle returned from gsfOpen

	option
	the desired action for moving the file pointer, where:

GSF_REWIND moves the pointer to first record in the file.

GSF_END_OF_FILE moves the pointer to the end of the file.

GSF_PREVIOUS_RECORD backup to the beginning of the record just written or just read.

Returns:

This function returns zero if successful, or -1 if an error occurred. gsfError is set to indicate the error.

Error Conditions:

GSF_BAD_FILE_HANDLE

GSF_BAD_SEEK_OPTION

GSF_FILE_SEEK_ERROR

GSF_FLUSH_ERROR

2.1.6 Function: gsfClose

Usage:

int gsfClose(const int handle)

Description:

This function closes a GSF file previously opened using gsfOpen.

Inputs:

	handle
	the handle of the GSF file to be closed.

Returns:

This function returns zero if successful, or -1 if an error occurred. gsfError is set to indicate the error.

Error Conditions:

GSF_BAD_FILE_HANDLE

GSF_FILE_CLOSE_ERROR

2.2 Utility Functions

Utility functions include those used to copy records, to free memory and to access multibeam processing parameters and scale factors.

2.2.1 Function: gsfCopyRecords

Usage:

int gsfCopyRecords (gsfRecords *target,

 gsfRecords *source)

Description:

This function copies all of the data contained in the source gsfRecords data structure to the target gsfRecords data structure. The target must be memset to zero before the first call to gsfCopyRecords. This function allocates dynamic memory that is NOT maintained by the library. The calling application must release the memory allocated by maintaining the target data structure as static data, or by using gsfFree to release the memory.

Inputs:

	target
	a pointer to a gsfRecords data structure allocated by the calling application, into which the source data is to be copied.

	source
	a pointer to a gsfRecords data structure allocated by the calling application, from which data is to be copied.

Returns:

This function returns zero if successful, or -1 if an error occurs. gsfError is set to indicate the error.

Error Conditions:

GSF_MEMORY_ALLOCATION_FAILED

2.2.2 Function: gsfFree

Usage:

void gsfFree (gsfRecords *rec)

Description:

This function frees all dynamically allocated memory from a gsfRecords data structure, and then clears all the data elements in the structure.

Inputs:

	Rec
	pointer to a gsfRecords data structure

Returns:

None

Error Conditions:

None

2.2.3 Function: gsfPutMBParams

Usage:

int gsfPutMBParams(gsfMBParams *p,

 gsfRecords *rec,

 int handle,

 int numArrays)

Description:

This function moves swath bathymetry sonar processing parameters from internal form to "KEYWORD=VALUE" form. The internal form parameters are read from an gsfMBParams data structure maintained by the caller. The "KEYWORD=VALUE" form parameters are written into the gsfProcessingParameters structure of the gsfRecords data structure maintained by the caller. Parameters for up to two pairs of transducers are supported.

Inputs:

	p
	a pointer to the gsfMBParams data structure which contains the parameters in internal form.

	rec
	a pointer to the gsfRecords data structure into which the parameters are to be written in the "KEYWORD=VALUE" form.

	handle
	the integer handle to the file set by gsfOpen.

	numArrays
	the integer value specifying the number of pairs of arrays that need to have seperate parameters tracked.

Returns:

This function returns zero if successful, or -1 if an error occurs. gsfError is set to indicate the error.

Error Conditions:

None.

2.2.4 Function: gsfGetMBParams

Usage:

int gsfGetMBParams(gsfRecords *rec,

 gsfMBParams *p,

 int *numArrays)

Description:

This function moves swath bathymetry sonar processing parameters from external form to internal form. The external "KEYWORD=VALUE" format parameters are read from a gsfProcessingParameters structure of the gsfRecords data structure maintained by the caller. The internal form parameters are written into a gsfMBParams data structure maintained by the caller. Parameters for up to two pairs of transducers are supported.

Inputs:

	rec
	a pointer to the gsfRecords data structure from which the parameters in "KEYWORD=VALUE" form are to be read.

	p
	a pointer to the gsfMBParams data structure which will be populated.

	numArrays
	the integer value specifying the number of pairs of arrays which need to have separate parameters tracked.

Returns:

This function returns zero if successful, or -1 if an error occurs. gsfError is set to indicate the error.

Error Conditions:

None.

2.2.5 Function: gsfLoadScaleFactors

Usage:

int gsfLoadScaleFactor(gsfScaleFactors *sf,

 int subrecordID,

 char c_flag,

 double precision,

 int offset)

Description:

gsfLoadScaleFactors is used to load the swath bathymetry ping record scale factor structure. This function assures that the multiplier and offset fields of the scale factor structure have a precision equal to that that will be stored in the GSF data file. This function should be called once for each beam array data type contained in your data.

Select the precision and offset values to scale the dynamic range of the data (expressed in engineering units) into the dynamic range of the array subrecord. The following table describes the amount of storage available for each of the array values.

	Array Subrecord
	Data Representation
	Size, bits
	Scaled Dynamic Range

	DEPTH_ARRAY
	unsigned short
	16
	0 to 65535

	NOMINAL_DEPTH_ARRAY
	unsigned short
	16
	0 to 65535

	ACROSS_TRACK_ARRAY
	signed short
	16
	-32768 to 32767

	ALONG_TRACK_ARRAY
	signed short
	16
	-32768 to 32767

	TRAVEL_TIME_ARRAY
	unsigned short
	16
	0 to 65535

	BEAM_ANGLE_ARRAY
	signed short
	16
	-32768 to 32767

	MEAN_CAL_AMPLITUDE_ARRAY
	signed byte
	8
	-128 to 127

	MEAN_REL_AMPLITUDE_ARRAY
	unsigned byte
	8
	0 to 255

	ECHO_WIDTH_ARRAY
	unsigned byte
	8
	0 to 255

	QUALITY_FACTOR_ARRAY
	unsigned byte
	8
	0 to 255

	RECEIVE_HEAVE_ARRAY
	signed byte
	8
	-128 to 127

	DEPTH_ERROR_ARRAY
	unsigned short
	16
	0 to 65535

	ACROSS_TRACK_ERROR_ARRAY
	unsigned short
	16
	0 to 65535

	ALONG_TRACK_ERROR_ARRAY
	unsigned short
	16
	0 to 65535

	QUALITY_FLAGS_ARRAY
	unsigned byte
	8
	0 to 255

	BEAM_FLAGS_ARRAY
	unsigned byte
	8
	0 to 255

	SIGNAL_TO_NOISE_ARRAY
	signed byte
	8
	-128 to 127

	BEAM_ANGLE_FORWARD_ARRAY
	signed short
	16
	-32768 to 32767

	VERTICAL_ERROR_ARRAY
	unsigned short
	16
	0 to 65535

	HORIZONTAL_ERROR_ARRAY
	unsigned short
	16
	0 to 65535

Inputs:

	sf
	a pointer to the gsfScaleFactors structure to be loaded

	subrecordID
	the subrecord id for the beam array data

	c_flag
	the compression flag for the beam array

	precision
	the precision to which the beam array data are to be stored(a value of 0.1 would indicate decimeter precision for depth)

	offset
	the "DC" offset to scale the data by.

Returns:

This function returns zero if successful, or -1 if an error occurred. gsfError is set to indicate the error.

Error Conditions:

GSF_BAD_FILE_HANDLE

GSF_CANNOT_REPRESENT_PRECISION

GSF_ILLEGAL_SCALE_FACTOR_MULTIPLIER

GSF_TOO_MANY_ARRAY_SUBRECORDS

2.2.6 Function: gsfGetScaleFactors

Usage:

int gsfGetScaleFactor(int handle,

 int subrecordID,

 unsigned char *c_flag,

 double *multiplier,

 double *offset)

Description:

gsfGetScaleFactors is used to obtain the compression flag, multiplier and DC offset values by which each swath bathymetry ping array subrecord is scaled. gsfGetScalesFactors must be called once for each array subrecord of interest. At least one swath bathymetry ping record must have been read from, or written to, the file specified by handle.

Inputs:

	handle
	the integer value set by a call to gsfOpen.

	subrecordID
	an integer value containing the subrecord id of the requested scale factors

	c_flag
	the address of an unsigned character to contain the compression flag

	multiplier
	the address of a double to contain the scaling multiplier

	offset
	the address of a double to contain the scaling DC offset.

Returns:

This function returns zero if successful, or -1 if an error occurred. gsfError is set to indicate the error.

Error Conditions:

GSF_BAD_FILE_HANDLE

GSF_ILLEGAL_SCALE_FACTOR_MULTIPLIER

GSF_TOO_MANY_ARRAY_SUBRECORDS
2.2.7 Function: gsfLoadDepthScaleFactorAutoOffset

Usage:

int gsfLoadDepthScaleFactorAutoOffset(gsfSwathBathyPing *ping,

 int subrecordID,

 int reset,

 double min_depth,

 double max_depth,

 double *last_corrector,

 char c_flag,

 double precision)

Description:

gsfLoadDepthScaleFactorAutoOffset may be used to load the scale factors for the depth subrecords of the swath bathymetry ping record scale factor structure. The function uses the tide and depth correction fields to help establish the offset component of the scale factor such that negative depth values may be supported. Negative depth values may be encountered when surveying above the tidal datum. In addition, this function may be used for systems mounted on subsea platforms where high depth precision may be supported even in deep water.

Inputs:

	Ping
	a pointer to the gsfSwathBathyPing which contains the depth and tide correction values, and the scale factors data structure.

	SubrecordID
	an integer value containing the subrecord ID for the beam array data; this must be either GSF_SWATH_BATHY_SUBRECORD_DEPTH_ARRAY, or GSF_SWATH_BATHY_SUBRECORD_NOMINAL_DEPTH_ARRAY.

	Reset
	an integer value that will cause the internal logic to be refreshed when the value is non-zero; the first call to this function should use a non-zero reset, from then on, this value may be passed as zero.

	min_depth
	a double value that should be set to the minimum depth value contained in the depth array specified by subrecordID; this argument exists for completeness, but is currently not used.

	max_depth
	a double value that should be set to the maximum depth value contained in the depth array specified by subrecordID; when a depth threshold is exceeded, the offset used to support “signed depth” is no longer required and will no longer be used. This approach is necessary to avoid an integer overflow when the array data are scaled.

	last_corrector
	an address of a double value stored as permanent memory; successive calls to this function must pass the same address for this argument. This function will take care of setting the value at this address, but the caller is responsible for ensuring that the same permanent memory address is used for each call to this function.

	c_flag
	the compression flag for the beam array.

	Double_precision
	the precision to which the beam array data are to be stored (a value of 0.1 would indicate decimeter precision for depth).

Returns:

This function returns zero if successful, or -1 if an error occurred. gsfError is set to indicate the error.

Error Conditions:

GSF_UNRECOGNIZED_ARRAY_SUBRECORD_ID

GSF_CANNOT_REPRESENT_PRECISION

GSF_TOO_MANY_ARRAY_SUBRECORDS
2.2.8 Macro: gsfTestPingStatus

Usage:

unsigned short gsfTestPingStatus(ping_flags, usflag)

Description:

This function returns the value of a single flag within the ping_flags field of the gsfSwathBathymetry record

Inputs:

	Ping_flags
	The contents of the ping_flags field.

	Usflag
	An unsigned short integer with a single bit set to identify the flag being tested.

Returns:

This macro TRUE if the bit within ping_flags, which corresponds to the bit set in usflags, is set. Otherwise, the macro returns FALSE.

Error Conditions:

None

2.2.9 Macro: gsfSetPingStatus

Usage:

unsigned short gsfSetPingStatus(ping_flags, usflag)

Description:

This function sets a bit within the within the ping_flags field of the gsfSwathBathymetry record

Inputs:

	Ping_flags
	The original contents of the ping_flags field.

	Usflag
	An unsigned short integer with a single bit set to identify the flag to be set.

Returns:

A new copy of the ping_flags field with the corresponding bit set.

Error Conditions:

None

2.2.10 Macro: gsfClearPingStatus

Usage:

unsigned short gsfClearPingStatus(ping_flags, usflag)

Description:

This function clears a bit within the within the ping_flags field of the gsfSwathBathymetry record.

Inputs:

	ping_flags
	The original contents of the ping_flags field.

	Usflag
	An unsigned short integer with a single bit set to identify the flag to be cleared.

Returns:

A new copy of the ping_flags field with the corresponding bit cleared.

Error Conditions:

None

2.3 Information Functions

Information functions include those that

· decode error conditions,

· return the time associated with a record at a specific location,

· return the location of the file pointer as a percentage of the total file size,

· provide the number and types of records within a file,

· provide information about beam widths of various types of sonar data and,

· for sonars with two transducers, determine whether a specific data record is from the starboard or port transducer.

2.3.1 Function: gsfPrintError

Usage:

void gsfPrintError(FILE * fp)

Description:

This function prints a short message describing the most recent error encountered. Call this function if a -1 is returned from one of the GSF functions.

Inputs:

fp
a pointer to a FILE to which the message is written.

Returns:

None

Error Conditions:

None

2.3.2 Function: gsfStringError

Usage:

char *gsfStringError(void);

Description:

This function returns a short message describing the most recent error encountered. Call this function if a -1 is returned from one of the gsf functions.

Inputs:

None

Returns:

Pointer to a string containing the text message.

Error Conditions:

None

2.3.3 Function: gsfIndexTime

Usage:

int gsfIndexTime(int handle,

 int record_type,

 int record_number,

 time_t *sec,

 long *nsec)

Description:

This function returns the time associated with a specified record number and type. It also returns the record number that was read.
Inputs:

	handle
	GSF file handle assigned by gsfOpen or gsfOpenBuffered

	record_type
	record type to be retrieved

	record_number
	record number to be retrieved (Setting this argument to -1 will get the time and record number of the last record of type record_type)

	sec
	Seconds since the beginning of the epoch (as defined in the GSF processing parameter record.)

	nsec
	Nanoseconds since the beginning of the second.

Returns:

This function returns the record number if successful, or -1 if an error occurred. gsfError is set to indicate the error.

Error Conditions:

GSF_FILE_SEEK_ERROR

GSF_INDEX_FILE_READ_ERROR

GSF_RECORD_TYPE_NOT_AVAILABLE

2.3.4 Function: gsfPercent

Usage:

int gsfPercent (int handle)

Description:

This function returns the location of the file pointer expressed as a percentage of the total file size. It may obtain an indication of how far along a program is in reading a GSF data file. The file size is obtained when the file is opened. If the file is being updated by another program, the value returned will be in error and will reflect the percentage based on the file’s size at the time that calling program opened the file.

Inputs:

	Handle
	gsf file handle assigned by gsfOpen or gsfOpenBuffered

Returns:

This function returns the current file position as a percentage of the file size, or -1 if an error occurred. gsfError is set to indicate the error.

Error Conditions:

GSF_BAD_FILE_HANDLE

GSF_FILE_TELL_ERROR

2.3.5 Function: gsfGetNumberRecords

Usage:

int gsfGetNumberRecords (int handle,

 int desiredRecord)

Description:

This function returns the number of records of a given type. The number of records is retrieved from the index file, so the file must have been opened for direct access (GSF_READONLY_INDEX, or GSF_UPDATE_INDEX).

Inputs:

handle

the handle to the file as provided by gsfOpen
desiredRecord

the desired record or GSF_NEXT_RECORD
Returns:

This function returns the number of records of type desiredRecord contained in the GSF file designated by handle, or -1 if an error occurred. gsfError is set to indicate the error.

Error Conditions:

GSF_BAD_FILE_HANDLE

GSF_BAD_ACCESS_MODE

2.3.6 Function: gsfGetSwathBathyBeamWidths

Usage:

int gsfGetSwathBathyBeamWidths(gsfRecords *data,

 double *fore_aft,

 double *athwartship)

Description:

This function returns to the caller the fore-aft and the port-starboard beam widths in degrees for a swath bathymetry multibeam sonar, given a gsfRecords data structure containing a populated gsfSwathBathyPing structure.

Inputs:

	data
	The address of a gsfRecords data structure maintained by the caller which contains a populated gsfSwathBathyPing substructure.

	fore_aft
	The address of a double allocated by the caller which will be loaded with the sonar's fore/aft beam width in degrees.

	athwartship
	The address of a double allocated by the caller which will be loaded with the sonar's athwartship beam width in degrees.

Returns:

This function returns zero if successful, or -1 if an error occurred. gsfError is set to indicate the error.

Error Conditions:

None.

2.3.7 Function: gsfGetSwathBathyArrayMinMax

Usage:

int gsfGetSwathBathyArrayMinMax(gsfSwathBathyPing *ping,

 int subrecordID,

 double *min_value,

 double *max_value)

Description:

This function returns to the caller the minimum and maximum supportable values for each of the swath bathymetry arrays. The minimum and maximum values are determined based on the scale factors and the array type.

Inputs:

	ping
	The address of a gsfSwathBathyPing data structure that contains the depth and tide correction values, as well as the scale factors data structure.

	subrecordID
	The subrecord ID for the beam array data.

	min_value
	The address of a double value allocated by the caller into which will be placed the minimum value that may be represented for this array type.

	max_value
	The address of a double value allocated by the caller into which will be placed the maximum value that may be represented for this array type.

Returns:

This function returns zero if successful, or -1 if an error occurred. gsfError is set to indicate the error.

Error Conditions:

GSF_UNRECOGNIZED_ARRAY_SUBRECORD_ID

GSF_ILLEGAL_SCALE_FACTOR_MULTIPLIER
2.3.8 Function: gsfIsStarboardPing

Usage:

int gsfIsStarboardPing(gsfRecords *data)

Description:

This function uses the sonar specific portion of a gsfSwathBathymetry ping structure to determine if the ping is from the starboard arrays of a multibeam installation with dual transducers.

Inputs:

	data
	The address of a gsfRecords data structure maintained by the caller containing a populated gsfSwathBathyPing substructure.

Returns:

This function returns non-zero if the ping contained in the passed data represents a starboard looking ping from a dual headed sonar installation. Otherwise, zero is returned. If the sonar does not have dual transducers, a value of zero will be returned.

Error Conditions:

None

2.3.9 Function: gsf_register_progress_callback

Usage:

void gsf_register_progress_callback(GSF_PROGRESS_CALLBACK progressCB)

Description:

This function registers a callback function, defined by the user, to be called to report the progress of the index file creation. If no progress callback is registered, status is printed to stdout if the DISPLAY_SPINNER macro is defined during compilation of the GSF library.

Inputs:

	progressCB
	The name of the progres callback function to call when creating the GSF index file. The progress callback will accept two integer arguments, and this function will be called whenever the percent complete changes. This fist argument will be one of the following three values, to represent the state of the progress:

 1 = Reading GSF file

 2 = Creating new index file

 3 = Appending to existing index file

The second argument contains the percent complete of the current state.

Returns:

None
Error Conditions:

None

3. Error Code Descriptions

Any GSF function that returns an error code also sets the value of gsfError before returning. Table 3-1 lists the reasons for error. gsfPrintError or gsfStringError can be used to generate a text string of the reason for the error.

Note that the current version of GSFlib does provide text string translations for all error code returns; however, not all definitions have unique values. A future release will address this issue. Table 3-1 presents all the reasons supported by gsfPrintError. The following table is a complete listing of all error return codes.

Table 3-1 GSF Errors
	Value of gsfError
	Value
	Reason for error

	GSF_ATTITUDE_RECORD_DECODE_FAILED
	-49
	“GSF Error decoding attitude record”

	GSF_ATTITUDE_RECORD_ENCODE_FAILED
	-50
	

	GSF_BAD_ACCESS_MODE
	-3
	“GSF Error illegal access mode”

	GSF_BAD_FILE_HANDLE
	-24
	“GSF Error bad file handle”

	GSF_BAD_SEEK_OPTION
	-15
	“GSF Error unrecognized file seek option”

	GSF_CANNOT_REPRESENT_PRECISION
	-22
	“GSF Error illegal scale factor multiplier specified”

	GSF_CHECKSUM_FAILURE
	-8
	“GSF Error data checksum failure”

	GSF_COMMENT_RECORD_DECODE_FAILED
	-30
	“GSF Error decoding comment record”

	GSF_COMMENT_RECORD_ENCODE_FAILED
	-30
	

	GSF_CORRUPT_INDEX_FILE_ERROR
	-37
	“GSF Error index file is corrupted, delete index file”

	GSF_FILE_CLOSE_ERROR
	-9
	“GSF Error closing gsf file”

	GSF_FILE_SEEK_ERROR
	-16
	“GSF Error file seek failed”

	GSF_FILE_TELL_ERROR
	-35
	“GSF Error file tell failed”

	GSF_FLUSH_ERROR
	-34
	“GSF Error flushing data buffers(s)”

	GSF_FOPEN_ERROR
	-1
	“GSF Unable to open requested file”

	GSF_HEADER_RECORD_DECODE_FAILED
	-25
	“GSF Error decoding header record”

	GSF_HEADER_RECORD_ENCODE_FAILED
	-25
	

	GSF_HISTORY_RECORD_DECODE_FAILED
	-31
	“GSF Error decoding history record”

	GSF_HISTORY_RECORD_ENCODE_FAILED
	-31
	

	GSF_HV_NAV_ERROR_RECORD_DECODE_FAILED
	-48
	“GSF Error decoding horizontal/vertical navigation error record”

	GSF_HV_NAV_ERROR_RECORD_ENCODE_FAILED
	-47
	“GSF Error encoding horizontal/vertical navigation error record”

	GSF_ILLEGAL_SCALE_FACTOR_MULTIPLIER
	-21
	“GSF Error illegal scale factor multiplier specified”

	GSF_INDEX_FILE_OPEN_ERROR
	-36
	“GSF Error open of index file failed”

	GSF_INDEX_FILE_READ_ERROR
	-44
	“GSF Error index file read error”

	GSF_INSUFFICIENT_SIZE
	-6
	“GSF Error insufficient size specified”

	GSF_INVALID_NUM_BEAMS
	-42
	“GSF Error invalid number of beams”

	GSF_INVALID_RECORD_NUMBER
	-43
	“GSF Error invalid record number”

	GSF_MB_PING_RECORD_DECODE_FAILED
	-26
	“GSF Error decoding multibeam ping record”

	GSF_MB_PING_RECORD_ENCODE_FAILED
	-26
	

	GSF_MEMORY_ALLOCATION_FAILED
	-12
	“GSF Error memory allocation failure”

	GSF_NAV_ERROR_RECORD_DECODE_FAILED
	-32
	“GSF Error decoding latitude/longitude navigation error record”

	GSF_NAV_ERROR_RECORD_ENCODE_FAILED
	-32
	

	GSF_NORMAL
	0
	

	GSF_PARAM_SIZE_FIXED
	-45
	“GSF Error unable to update existing file with increased record size”

	GSF_PROCESS_PARAM_RECORD_DECODE_FAILED
	-28
	“GSF Error decoding processing parameters record”

	GSF_PROCESS_PARAM_RECORD_ENCODE_FAILED
	-28
	

	GSF_READ_ERROR
	-4
	“GSF Error reading input data”

	GSF_READ_TO_END_OF_FILE
	-23
	

	GSF_RECORD_SIZE_ERROR
	-7
	“GSF Error record size is out of bounds”

	GSF_RECORD_TYPE_NOT_AVAILABLE
	-39
	“GSF Error requested indexed record type not in gsf file”

	GSF_SCALE_INDEX_CALLOC_ERROR
	-38
	“GSF Error calloc of scale factor index memory failed”

	GSF_SENSOR_PARAM_RECORD_DECODE_FAILED
	-29
	“GSF Error decoding sensor parameters record”

	GSF_SENSOR_PARAM_RECORD_ENCODE_FAILED
	-29
	

	GSF_SETVBUF_ERROR
	-33
	“GSF Error setting internal file buffering”

	GSF_SINGLE_BEAM_ENCODE_FAILED
	-46
	“GSF Error stream encode failure”

	GSF_STREAM_DECODE_FAILURE

***Note: error code is not used
	-14
	“GSF Error stream decode failure”

	GSF_SUMMARY_RECORD_DECODE_FAILED
	-40
	“GSF Error decoding summary record”

	GSF_SUMMARY_RECORD_ENCODE_FAILED
	-41
	“GSF Error encoding summary record”

	GSF_SVP_RECORD_DECODE_FAILED
	-27
	“GSF Error decoding SVP record”

	GSF_SVP_RECORD_ENCODE_FAILED
	-27
	

	GSF_TOO_MANY_ARRAY_SUBRECORDS
	-10
	“GSF Error too many array subrecords”

	GSF_TOO_MANY_OPEN_FILES
	-11
	“GSF Error too many open files”

	GSF_UNRECOGNIZED_ARRAY_SUBRECORD_ID
	-19
	“GSF Error unrecognized array subrecord id ”

	GSF_UNRECOGNIZED_DATA_RECORD
	-18
	“GSF Error unrecognized data record id”

	GSF_UNRECOGNIZED_FILE
	-2
	“GSF Error unrecognized file”

	GSF_UNRECOGNIZED_RECORD_ID
	-13
	“GSF Error unrecognized record id”

	GSF_UNRECOGNIZED_SENSOR_ID
	-17
	“GSF Error unrecognized sensor specific subrecord id”

	GSF_UNRECOGNIZED_SUBRECORD_ID
	-20
	“GSF Error unrecognized subrecord id”

	GSF_WRITE_ERROR
	-5
	“GSF Error writing output data”

	Unrecognized error condition
	
	“GSF unknown error”

4. C-language Definitions of Structures used by GSFlib

GSFlib is built upon several complex data structures that are passed to applications using the library to access data. This section describes these complex data structures.

4.1 Definition of GSF Data Records

Eleven data records define GSF data. Subsequent sections define each of these records. The gsfRecords structure allows all records to be addressed as a unit.

typedef struct t_gsfRecords

{

 gsfHeader

 header;

 gsfSwathBathySummary summary;

 gsfSwathBathyPing mb_ping;

 gsfSingleBeamPing sb_ping;

 gsfSVP
 svp;

 gsfProcessingParameters process_parameters;

 gsfSensorParameters sensor_parameters;

 gsfComment
 comment;

 gsfHistory
 history;

 gsfNavigationError nav_error;

 gsfHVNavigationError hv_nav_error;

 gsfAttitude attitude;

} gsfRecords;

4.1.1 Header Record

A header record is required to be the first record of every GSF data file.

#define GSF_VERSION_SIZE 12

typedef struct t_gsfHeader

{

 char
 version[GSF_VERSION_SIZE];

}

gsfHeader;

4.1.2 Swath Bathymetry Ping Record

typedef struct t_gsfSwathBathyPing

{

 struct timespec ping_time;

/* seconds and nanoseconds */

 double
 latitude;

/* in degrees */

 double
 longitude;

/* in degrees */

 short
 number_beams;

/* in this ping */

 short
 center_beam;

/* offset into array (0 = portmost outer) */

 unsigned short ping_flags;

/* flags to mark status of this ping */

 short
 reserved;

/* for future use */

 double
 tide_corrector;

/* in meters */

 double
 depth_corrector;
/* in meters */

 double
 heading;

/* in degrees */

 double
 pitch;

/* in degrees */

 double
 roll;

/* in degrees */

 double
 heave;

/* in meters
*/

 double
 course;

/* in degrees */

 double
 speed;

/* in knots */

 gsfScaleFactors scaleFactors;

/* The array scale factors for this data */

 double
 *depth;

/* depth array (meters) */

 double
 *nominal_depth;

/* Array of depth relative to 1500 m/s */

 double
 *across_track;

/* across track array (meters) */

 double
 *along_track;

/* along track array (meters) */

 double
 *travel_time;

/* roundtrip travel time array (seconds) */

 double
 *beam_angle;

/* beam angle array (degrees from vertical) */

 double
 *mc_amplitude;
 /* mean, calibrated beam amplitude array (dB

 re 1V/micro pascal at 1 meter) */

 double
 *mr_amplitude;
 /* mean, relative beam amplitude array (dB re

 1V/micro pascal at 1 meter) */

 double
 *echo_width;

 /* echo width array (seconds) */

 double
 *quality_factor;
 /* quality factor array (dimensionless) */

 double
 *receive_heave;
 /* Array of heave data (meters) */

 double
 *depth_error;

 /* Array of estimated vertical error

 (meters)*/

 double
 across_track_error; / Array of estimated across track error

 (meters) */

 double
 *along_track_error;
 /* Array of estimated along track error

 (meters) */

 unsigned char *quality_flags;
 /* Two bit beam detection flags provided by

 Reson sonar */

 unsigned char *beam_flags;

 /* Array of beam status flags */

 double
 *signal_to_noise;
 /* signal to noise ratio (dB) */

 double
 *beam_angle_forward;
 /* beam angle forward array (degrees

 counterclockwise from stbd.) */

 double *vertical_error;
 /* Array of estimated vertical error (meters,

 at 95% confidence */

 double *horizontal_error;
 /* Array of estimated horizontal error

 (meters, at 95% confidence */

 int
 sensor_id;

 /* a definition which specifies the sensor */

 gsfSensorSpecific sensor_data;
 /* union of known sensor specific data */

 gsfBRBIntensity *brb_inten; /* Structure containing bathymetric receive beam time series intensities */

}

gsfSwathBathyPing;

4.1.2.1 Scale Factor Subrecord

typedef struct t_gsfScaleInfo

{

 unsigned char compressionFlag; /* flag for applicable compression routine */

 double

 multiplier; /* the scale factor (millionths)for the array */

 double

 offset;
 /* dc offset to scale data by */

} gsfScaleInfo;

typedef struct t_gsfScaleFactors

{

 int
 numArraySubrecords; /* number of scaling factors we actually have */

 gsfScaleInfo scaleTable[GSF_MAX_PING_ARRAY_SUBRECORDS];

} gsfScaleFactors;

4.1.2.2 Multibeam Sensor-specific Subrecords

/* Define the typeIII specific data structure */

typedef struct t_gsfTypeIIISpecific

{

 unsigned short leftmost_beam; /* 0 - leftmost possible beam */

 unsigned short rightmost_beam;

 unsigned short total_beams;

 unsigned short nav_mode;

 unsigned short ping_number;

 unsigned short mission_number;

}

t_gsfTypeIIISpecific;

/* The gsfCmpSassSpecific data structure is intended to replace the gsfTypeIII Specific * data structure in a future release. All new coding should use the gsfCmpSassSpecific * data structure.

 */

/* Define the CMP (Compressed) SASS specific data structure (from sass.h) */

typedef struct t_gsfCmpSassSpecific

{

 /**

 *

 * Mapping from Compressed SASS (BOSDAT) to GSF record

 *

 * from to comment

 * ===

 *

 * lntens ping.heave mapped only when year is post 1991 or

 * user has elected to force mapping.

 * lfreq not-mapped

 * ldraft comment APPLIED_DRAFT comment record

 * svp.svel svp.sound_velocity at <= 1000 ... FATHOMS

 * at <= 2500 ... METERS

 * otherwise ... FEET

 * svp.deptl svp.depth (see sound_velocity)

 * lmishn comment MISSION_NUMBER comment record

 * luyr ping_time GSF time record from 1960 to 1970 base

 * pitchl ping.pitch

 * rolll ping.roll

 * lbear ping.heading SASS specific (not Seabeam)

 * pinhd ping.heading Seabeam specific (not SASS)

 * depth ping.nominal_depth FATHOMS_TO_METERS_NOMINAL

 * pslatl ping.across_track YARDS_TO_METERS_EXACT

 * bltime ping.travel_time

 * ampl ping.mr_amplitude

 * <ftaf file> ping.beam_flags HMPS_FLAGS

 * alpos ping.along_track SASS specific YARDS_TO_METERS_EXACT

 *

 ***/

double lfreq; /* sea-surface sound velocity in feet/sec from bosdat(lfreq) */

double lntens; /* since 1992 this value has represented the heave associated with the ping; prior to 1992, field description unknown */

}

t_gsfCmpSassSpecific;

/* Define the 16 Beam SeaBeam specific data structure */

typedef struct t_gsfSeabeamSpecific

{

 unsigned short EclipseTime; /* In 10ths of seconds */

}

t_gsfSeaBeamSpecific;

typedef struct t_gsfSBAmpSpecific

{

 unsigned char hour;

 unsigned char minute;

 unsigned char second;

 unsigned char hundredths;

 unsigned int block_number;

 short

avg_gate_depth;

}

t_gsfSBAmpSpecific;

/* Define the Seamap specific data structure */

typedef struct t_gsfSeamapSpecific

{

 double
 portTransmitter[2];

 double
 stbdTransmitter[2];

 double
 portGain;

 double
 stbdGain;

 double
 portPulseLength;

 double
 stbdPulseLength;

 double
 pressureDepth;

 double
 altitude;

 double
 temperature;

}

t_gsfSeamapSpecific;

/* Define the EM950/EM1000 specific data structure */

typedef struct t_gsfEM950Specific

{

 int
 ping_number;

 int
 mode;

 int
 ping_quality;

 double
 ship_pitch;

 double
 transducer_pitch;

 double
 surface_velocity;

}

t_gsfEM950Specific;

/* Define the EM100 specific data structure */

typedef struct t_gsfEM100Specific

{

 double
 ship_pitch;

 double
 transducer_pitch;

 int
 mode;

 int
 power;

 int
 attenuation;

 int
 tvg;

 int
 pulse_length;

 int
 counter;

}

t_gsfEM100Specific;

/* Define the EM121A specific data structure */

typedef struct t_gsfEM121ASpecific

{

 int
 ping_number;

 int
 mode;

 int
 valid_beams;

 int
 pulse_length;

 int
 beam_width;

 int
 tx_power;

 int
 tx_status;

 int
 rx_status;

 double
 surface_velocity;

}

t_gsfEM121ASpecific;

/* Define a data structure to hold the Simrad EM3000 series run time parameters. */

typedef struct t_gsfEM3RunTime

{

 int model_number; /* from the run-time parameter datagram */

 struct timespec dg_time; /* from the run-time parameter datagram */

 int ping_number; /* sequential counter 0 - 65535 */

 int serial_number; /* The sonar head serial number */

 int system_status; /* normally = 0 */

 int mode; /* 0=nearfield, 1=normal, 2=target,

 3=deep, 4=very deep */

 int filter_id;

 double min_depth; /* meters */

 double max_depth; /* meters */

 double absorption; /* dB/km */

 double pulse_length; /* micro seconds */

 double transmit_beam_width; /* degrees */

 int power_reduction; /* dB */

 double receive_beam_width; /* degrees */

 int receive_bandwidth; /* Hz */

 int receive_gain; /* dB */

 int cross_over_angle; /* degrees */

 int ssv_source; /* 0=sensor, 1=manual, 2=profile */

 int swath_width; /* total swath width in meters */

 int beam_spacing; /* 0=beamwidth, 1=equiangle,
 2=equidistant, 3=intermediate */

 int coverage_sector; /* total coverage in degrees */

 int stabilization;

 int port_swath_width; /* maximum port swath width in meters */

 int stbd_swath_width; /* maximum starboard swath width in

 meters */

 int port_coverage_sector; /* maximum port coverage in degrees */

 int stbd_coverage_sector; /* maximum starboard coverage in degrees */

 int hilo_freq_absorp_ratio;

 int spare1; /* four spare bytes */

}

t_gsfEM3RunTime;

/* Define the Simrad EM3000 series specific data structure */

typedef struct t_gsfEM3Specific

{

 /* The first nine values are updated with each depth datagram */

 int model_number; /* ie: 3000, ... */

 int ping_number; /* 0 - 65535 */

 int serial_number; /* 100 - 65535 */

 double surface_velocity; /* in m/s */

 double transducer_depth; /* transmit transducer depth in meters */

 int valid_beams; /* number of valid beams for this ping */

 int sample_rate; /* in Hz */

 double depth_difference; /* in meters between sonar heads in em3000d
 configuration */

 int offset_multiplier; /* transducer depth offset multiplier */

/* The gsfEM3RunTime data structure is updated with each run-time parameter datagram*/

 gsfEM3RunTime run_time[2]; /* A two element array is needed to support em3000d */

}

t_gsfEM3Specific;

/* Define the Reson SeaBat specific data structure */

typedef struct t_gsfSeaBatSpecific

{

 int
 ping_number;

 double
 surface_velocity;

 int
 mode;

 int
 sonar_range;

 int
 transmit_power;

 int
 receive_gain;

}

t_gsfSeaBatSpecific;

/* The gsfSeaBatIISpecific data structure is intended to replace the

 * gsfSeaBatSpecific data structure as of GSF_1.04.

 */

typedef struct t_gsfSeaBatIISpecific

{

 int
 ping_number;
 /* 1 - 32767 */

 double
 surface_velocity; /* meters/second */

 int
 mode;

 /* bit mapped, see macros below */

 int
 sonar_range;
 /* meters */

 int
 transmit_power;

 int
 receive_gain;

 double
 fore_aft_bw;
 /* fore/aft beam width in degrees */

 double
 athwart_bw;
 /* athwartships beam width in degrees */

 char
 spare[4];
 /* Four bytes of spare space, for future use */

}

t_gsfSeaBatIISpecific;

/* Macro definitions for the SeaBatSpecific and SeaBatIISpecific mode field */

#define GSF_SEABAT_WIDE_MODE
0x01 /* if set 10 deg fore-aft
*/

#define GSF_SEABAT_9002

0x02 /* if set two sonar heads
*/

#define GSF_SEABAT_STBD_HEAD
0x04 /* if set starboard ping (seabat head 2) */

#define GSF_SEABAT_9003

0x08 /* if set 9003 series sonar (40 beams) */

/* Define the Reson SeaBat specific data structure */

typedef struct t_gsfSeaBat8101Specific

{

 int
 ping_number;
 /* 1 - 65535 */

 double
 surface_velocity; /* meters/second */

 int
 mode;

 /* bit mapped, see macros below */

 int
 range;

 /* meters */

 int
 power;

 /* 0-8 + status bits */

 int
 gain;

 /* 1-45 + status bits */

 int
 pulse_width;
 /* in microseconds */

 int
 tvg_spreading;
 /* tvg spreading coefficient * 4 */

 int
 tvg_absorption;
 /* tvg absorption coefficient */

 double
 fore_aft_bw;
 /* fore/aft beam width in degrees */

 double
 athwart_bw;
 /* athwartships beam width in degrees */

 double
 range_filt_min; /* range filter, minimum value, meters (future use) */

 double
 range_filt_max; /* range filter, maximum value, meters (future use) */

 double
 depth_filt_min; /* depth filter, minimum value, meters (future use) */

 double
 depth_filt_max; /* depth filter, maximum value, meters (future use) */

 int
 projector; /* projector type (future use) */

 char
 spare[4];
 /* Four bytes of spare space, for future use */

}

t_gsfSeaBat8101Specific;

/* Macro definitions for the SeaBat8101Specific and SeaBat8101Specific mode field */

#define GSF_8101_WIDE_MODE

0x01 /* set if transmit on receiver */

#define GSF_8101_TWO_HEADS

0x02 /* set if two sonar heads */

#define GSF_8101_STBD_HEAD

0x04 /* set if starboard ping (seabat head 2) */

#define GSF_8101_AMPLITUDE

0x08 /* set if beam amplitude is available (RITHETA
 packet) */

/* Define the SeaBeam 2112/36 specific data structure */

typedef struct t_gsfSeaBeam2112Specific

{

 int
mode;

/* bit mapped, see macros below */

 double
surface_velocity;

/* meters/second */

 char
ssv_source;

/* (V)elocimiter, (M)anual, (T)emperature,

 (E)xternal, or (U)nknown */

 int
ping_gain;

/* dB */

 int
pulse_width;

/* in milliseconds */

 int
transmitter_attenuation;
/* dB */

 int
number_algorithms;

/* algorithms per beam (1-4) */

 char
algorithm_order[5];

/* null terminated string, each char will be

 either a space, W(MT), or B(DI). If

 number_algorithms equals one, this will be
 four spaces */

 char
spare[2];

/* Two bytes of spare space, for future use */

}

t_gsfSeaBeam2112Specific;

/* Macro definitions for the SeaBeam2112Specific mode field */

#define GSF_2112_SVP_CORRECTION
0x01
/* set if true depth, true position corrections
 are used */

#define GSF_2112_LOW_FREQUENCY
0x02
/* set if using 12kHz frequency - 36kHz if not
 set */

#define GSF_2112_AUTO_DEPTH_GATE
0x04
/* set if depth gate mode is automatic - manual
 if not set */

/* SeaBeam 2112 specific macro definitions for the quality factor array */

#define GSF_2112_POOR_QUALITY
0x01
/* set if the beam was flagged by the SeaBeam

 as poor quality */

#define GSF_2112_DATA_SOURCE_WMT
0x10
/* set if the data source is WMT - source is

 BDI if not set */

/* Define the Elac MkII specific data structure */

typedef struct t_gsfElacMkIISpecific

{

 int

mode;

/* bit mapped, see macros below */

 int

ping_num;

 int

sound_vel;

/* 0.1 m/s */

 int

pulse_length;

/* 0.01 ms */

 int

receiver_gain_stbd;

/* db */

 int

receiver_gain_port;

/* db */

 int

reserved;

}

t_gsfElacMkIISpecific;

/* Macro definitions for the ElacMkIISpecific mode field */

#define GSF_MKII_LOW_FREQUENCY
0x01
/* set if using 12kHz frequecy - 36kHz if not

 set */

#define GSF_MKII_SOURCE_MODE
0x02
/* set if RDT transmit used, otherwise omni */

#define GSF_MKII_SOURCE_POWER
0x04
/* set if transmit high power - low power if

 not set */

#define GSF_MKII_STBD_HEAD

0x08
/* set if starboard ping */

/* Define the Reson 8100 specific data structure */

typedef struct t_gsfReson8100Specific

{

 int latency; /* time from ping to output (milliseconds) */

 int ping_number; /* 4 byte ping number */

 int sonar_id; /* least significant 4 bytes of ethernet address */

 int sonar_model; /* */

 int frequency; /* KHz */

 double surface_velocity; /* meters/second */

 int sample_rate; /* A/D samples per second */

 int ping_rate; /* pings per second * 1000 */

 int mode; /* bit mapped, see macros below */

 int range; /* meters */

 int power; /* 0-8 + status bits */

 int gain; /* 1-45 + status bits */

 int pulse_width; /* in microseconds */

 int tvg_spreading; /* tvg spreading coefficient * 4 */

 int tvg_absorption; /* tvg absorption coefficient */

 double fore_aft_bw; /* fore/aft beam width in degrees */

 double athwart_bw; /* athwartships beam width in degrees */

 int projector_type; /* projector type */

 int projector_angle; /* projector pitch steering angle (degrees * 100) */

 double range_filt_min; /* range filter, minimum value, meters */

 double range_filt_max; /* range filter, maximum value, meters */

 double depth_filt_min; /* depth filter, minimum value, meters */

 double depth_filt_max; /* depth filter, maximum value, meters */

 int filters_active; /* bit 0 - range filter, bit 1 - depth filter */

 int temperature; /* temperature at sonar head (deg C * 10) */

 double beam_spacing; /* across track receive beam angular spacing */

 char spare[2]; /* Two bytes of spare space, for future use */

}

t_gsfReson8100Specific;

/* Macro definitions for the SeaBat8100Specific mode field */

#define GSF_8100_WIDE_MODE 0x01 /* set if transmit on receiver */

#define GSF_8100_TWO_HEADS 0x02 /* set if two sonar heads */

#define GSF_8100_STBD_HEAD 0x04 /* set if starboard ping (seabat head 2) */

#define GSF_8100_AMPLITUDE 0x08 /* set if beam amplitude is available (RITHETA packet) */

#define GSF_8100_PITCH_STAB 0x10 /* set if pitch stabilized */

#define GSF_8100_ROLL_STAB 0x20 /* set if roll stabilized */

/* Define the Echotrac Single-Beam sensor specific data structure. */

#define GSF_SB_MPP_SOURCE_UNKNOWN 0x00 /* Unknown MPP source */

#define GSF_SB_MPP_SOURCE_GPS_3S 0x01 /* GPS 3S */

#define GSF_SB_MPP_SOURCE_GPS_TASMAN 0x02 /* GPS Tasman */

#define GSF_SB_MPP_SOURCE_DGPS_TRIMBLE 0x03 /* DGPS Trimble */

#define GSF_SB_MPP_SOURCE_DGPS_TASMAN 0x04 /* DGPS Tasman */

#define GSF_SB_MPP_SOURCE_DGPS_MAG 0x05 /* DGPS MagMPPox */

#define GSF_SB_MPP_SOURCE_RANGE_MFIX 0x06 /* Range/Azimauth - Microfix */

#define GSF_SB_MPP_SOURCE_RANGE_TRIS 0x07 /* Range/Azimauth - Trisponder */

#define GSF_SB_MPP_SOURCE_RANGE_OTHER 0x08 /* Range/Azimauth - Other */

typedef struct t_gsfSBEchotracSpecific

{

 int navigation_error;

 unsigned short mpp_source; /* Flag To determine mpp source - See above */

 unsigned short tide_source; /* in GSF Version 2.02+ this is in ping flags */

 double dynamic_draft; /* speed induced draft im meters */

 char spare[4]; /* four bytes of reserved space */

}

t_gsfSBEchotracSpecific;

/* Define the MGD77 Single-Beam sensor specific data structure. */

typedef struct t_gsfSBMGD77Specific

{

 unsigned short time_zone_corr;

 unsigned short position_type_code;

 unsigned short correction_code;

 unsigned short bathy_type_code;

 unsigned short quality_code;

 double travel_time;

 char spare[4]; /* four bytes of reserved space */

}

t_gsfSBMGD77Specific;

/* Define the BDB sensor specific data structure */

typedef struct t_gsfSBBDBSpecific

{

 int doc_no; /* Document number (5 digits) */

 char eval; /* Evaluation (1-best, 4-worst) */

 char classification; /* Classification ((U)nclass, (C)onfidential,

 (S)ecret, (P)roprietary/Unclass,

 (Q)Proprietary/Class) */

 char track_adj_flag; /* Track Adjustment Flag (Y,N) */

 char source_flag; /* Source Flag ((S)urvey, (R)andom, (O)cean Survey) */

 char pt_or_track_ln; /* Discrete Point (D) or Track Line (T) Flag */

 char datum_flag; /* Datum Flag ((W)GS84, (D)atumless) */

 char spare[4]; /* four bytes of reserved space */

}

t_gsfSBBDBSpecific;

/* Define the NOS HDB sensor specific data structure */

typedef struct t_gsfSBNOSHDBSpecific

{

 unsigned short type_code; /* Depth type code */

 unsigned short carto_code; /* Cartographic code */

 char spare[4]; /* four bytes of reserved space */

}

t_gsfSBNOSHDBSpecific;

/* Define the Navisound sensor specific data structure */

typedef struct t_gsfSBNavisoundSpecific

{

 double pulse_length; /* pulse length in cm */

 char spare[8]; /* eight bytes of reserved space */

}

t_gsfSBNavisoundSpecific;

/* Define a union of the known sensor specific ping subrecords */

typedef union t_gsfSensorSpecific

{

 t_gsfSeaBeamSpecific

gsfSeaBeamSpecific;

 t_gsfEM100Specific

gsfEM100Specific;

 t_gsfEM121ASpecific

gsfEM121ASpecific;

 t_gsfEM121ASpecific

gsfEM121Specific;

 t_gsfSeaBatSpecific

gsfSeaBatSpecific;

 t_gsfEM950Specific

gsfEM950Specific;

 t_gsfEM950Specific

gsfEM1000Specific;

 t_gsfSeamapSpecific

gsfSeamapSpecific;

 /*

 * The following two subrecords are expected to be replaced

 * in a future release by the gsfCmpSassSpecific subrecord.

 */

 t_gsfTypeIIISpecific

gsfTypeIIISeaBeamSpecific;

 t_gsfTypeIIISpecific

gsfSASSSpecific;

 t_gsfCmpSassSpecific
gsfCmpSassSpecific;

 t_gsfSBAmpSpecific

gsfSBAmpSpecific;

 t_gsfSeaBatIISpecific
gsfSeaBatIISpecific;

 t_gsfSeaBat8101Specific
gsfSeaBat8101Specific;

 t_gsfSeaBeam2112Specific
gsfSeaBeam2112Specific;

 t_gsfElacMkIISpecific
gsfElacMkIISpecific;

 t_gsfEM3Specific
gsfEM3Specific;

 t_gsfReson8100Specific

gsfReson8100Specific;

 /* Single beam sensors added */

 t_gsfSBEchotracSpecific gsfSBEchotracSpecific;

 t_gsfSBEchotracSpecific gsfSBBathy2000Specific;

 t_gsfSBMGD77Specific gsfSBMGD77Specific;

 t_gsfSBBDBSpecific gsfSBBDBSpecific;

 t_gsfSBNOSHDBSpecific gsfSBNOSHDBSpecific;

 t_gsfSBEchotracSpecific gsfSBPDDSpecific;} gsfSensorSpecific;

4.1.2.3 Bathymetric Receive Beam Time Series Intensity Subrecord

typedef struct gsfTimeSeriesIntensity

{

 unsigned short sample_count; /* number of amplitude samples ber beam */

 unsigned short detect_sample; /* index of bottom detection sample for the beam */

 unsigned char spare[8]; /* for future use */

 unsigned int *samples; /* Array of per-beam time series intensity samples */

} gsfTimeSeriesIntensity;

#define GSF_INTENSITY_LINEAR (unsigned)0x01

#define GSF_INTENSITY_CALIBRATED (unsigned)0x02

#define GSF_INTENSITY_POWER (unsigned)0x04

#define GSF_INTENSITY_GAIN (unsigned)0x08

typedef struct t_gsfBRBIntensity

{

 unsigned char bits_per_sample; /* bits per intensity sample */

 unsigned int applied_corrections; /* flags to describe corrections

 applied to intensity values */

 unsigned char spare[16]; /* spare header space */

 gsfSensorImagery sensor_imagery; /* sensor specific per-ping imagery

 information */

 gsfTimeSeriesIntensity *time_series; /* array of per-beam time series

 intenstites records */

} gsfBRBIntensity;

typedef struct t_gsfEM3ImagerySpecific

{

 unsigned short range_norm; /* range to normal incidence used to correct

 sample amplitudes (in samples) */

 unsigned short start_tvg_ramp; /* start range sample of TVG ramp if not enough

 dynamic range (0 else) */

 unsigned short stop_tvg_ramp; /* stop range sample of TVG ramp if not enough

 dynamic range (0 else) */

 char bsn; /* normal incidence BS in dB */

 char bso; /* oblique BS in dB */

 double mean_absorption; /* mean absorption coeffiecien in dB/km,

 resolution of 0.01 dB/km) */

 unsigned char spare[8]; /* spare sensor specific subrecord space,

 reserved for future expansion */

} t_gsfEM3ImagerySpecific;

typedef struct t_gsfReson8100ImagerySpecific

{

 unsigned char spare[8]; /* spare sensor specific subrecord space,

 reserved for future expansion */

} t_gsfReson8100ImagerySpecific;

typedef union t_gsfSensorImagery

{

 t_gsfEM3ImagerySpecific gsfEM3ImagerySpecific; /* used for EM120,

 EM300, EM1002, EM3000,

 EM3002, and EM121A_SIS */

 t_gsfReson8100ImagerySpecific gsfReson8100ImagerySpecific; /* For Reson 81P

 "snippet" imagery */

} gsfSensorImagery;

4.1.3 Single-beam Bathymetry Record

/* Define a single beam record structure */

typedef struct t_gsfSingleBeamPing

{

 struct timespec ping_time;

 /* Time the sounding was made */

 double
 latitude;

 /* latitude (degrees) of sounding */

 double
 longitude;

 /* longitude (degrees) of sounding */

 double
 tide_corrector;

 /* in meters */

 double
 depth_corrector;
 /* in meters, draft corrector for sensor */

 double
 heading;

 /* in degrees */

 double
 pitch;

 /* in meters */

 double
 roll;

 /* in meters */

 double
 heave;

 /* in meters */

 double
 depth;

 /* in meters */

 double
 sound_speed_correction; /* in meters */

 unsigned short positioning_system_type;

 int
 sensor_id;

 gsfSBSensorSpecific sensor_data;

}

gsfSingleBeamPing;
4.1.3.1 Single-beam Sensor-specific Subrecords

/* Define the Echotrac Single-Beam sensor specific data structure. */

typedef struct t_gsfEchotracSpecific

{

 int

navigation_error;

 unsigned short

mpp_source;

/* Flag To determine if nav was mpp */

 unsigned short

tide_source;

}

t_gsfEchotracSpecific;

/* Define the MGD77 Single-Beam sensor specific data structure. */

typedef struct t_gsfMGD77Specific

{

 unsigned short time_zone_corr;

 unsigned short position_type_code;

 unsigned short correction_code;

 unsigned short bathy_type_code;

 unsigned short quality_code;

 double travel_time;

}

t_gsfMGD77Specific;

/* Define the BDB sensor specific data structure */

typedef struct t_gsfBDBSpecific

{

 int doc_no;

/* Document number (5 digits)

*/

 char eval;

/* Evaluation (1-best, 4-worst)

*/

 char classification;
/* Classification ((U)nclass, (C)onfidential,

 (S)ecret, (P)roprietary/Unclass,

 (Q)Proprietary/Class)

*/

 char track_adj_flag;
/* Track Adjustment Flag (Y,N)

*/

 char source_flag;
/* Source Flag ((S)urvey, (R)andom, (O)cean Survey)
*/

 char pt_or_track_ln;
/* Discrete Point (D) or Track Line (T) Flag

*/

 char datum_flag;
/* Datum Flag ((W)GS84, (D)atumless)

*/

}

t_gsfBDBSpecific;

/* Define the NOS HDB sensor specific data structure */

typedef struct t_gsfNOSHDBSpecific

{

 unsigned short type_code;
 /* Depth type code */

 unsigned short carto_code;
 /* Cartographic code */

}

t_gsfNOSHDBSpecific;

4.1.4 Sound Velocity Profile (SVP) Record

typedef struct t_gsfSVP

{

 struct timespec observation_time;
/* time the SVP measurement was made
 */

 struct timespec application_time;
/* time the SVP was used by the sonar
 */

 double
 latitude;

/* latitude (degrees) of SVP measurement */

 double
 longitude;

/* longitude (degrees) of SVP measurement */

 int
 number_points;

/* number of data points in the profile
 */

 double
 *depth;

/* array of profile depth values in meters */

 double
 *sound_speed;
/* array of profile sound velocity values in m/s */

}

gsfSVP;

4.1.5 Processing Parameters Record

#define GSF_MAX_PROCESSING_PARAMETERS 128

typedef struct t_gsfProcessingParameters

{

 struct timespec param_time;

 int number_parameters;

 short param_size[GSF_MAX_PROCESSING_PARAMETERS];
 /* array of sizes of param text*/

 char *param[GSF_MAX_PROCESSING_PARAMETERS];
 /* array of parameters:

 "param_name=param_value" */

}

gsfProcessingParameters;

4.1.5.1 Internal Structure for Processing Parameters

#define GSF_MAX_OFFSETS

 2

#define GSF_COMPENSATED

 1

#define GSF_UNCOMPENSATED

 0

#define GSF_TRUE_DEPTHS

 1

#define GSF_DEPTHS_RE_1500_MS
 2

#define GSF_DEPTH_CALC_UNKNOWN
 3

#define GSF_UNKNOWN_PARAM_VALUE DBL_MIN
/* defined in <float.h> */

typedef struct t_gsfMBOffsets

{

 double
 draft[GSF_MAX_OFFSETS];

/* meters */

 double
 roll_bias[GSF_MAX_OFFSETS];

/* degrees */

 double
 pitch_bias[GSF_MAX_OFFSETS];

/* degrees */

 double
 gyro_bias[GSF_MAX_OFFSETS];

/* degrees */

 double
 position_x_offset;

/* meters */

 double
 position_y_offset;

/* meters */

 double
 position_z_offset;

/* meters */

 double
 transducer_x_offset[GSF_MAX_OFFSETS];
/* meters */

 double
 transducer_y_offset[GSF_MAX_OFFSETS];
/* meters */

 double
 transducer_z_offset[GSF_MAX_OFFSETS];
/* meters */

 double mru_roll_bias; /* degrees */

 double mru_pitch_bias; /* degrees */

 double mru_heading_bias; /* degrees */

 double mru_x_offset; /* meters */

 double mru_y_offset; /* meters */

 double mru_z_offset; /* meters */

} gsfMBOffsets;

/* Define a data structure to hold multibeam sonar processing parameters */

typedef struct t_gsfMBParams

{

 /* These parameters define reference points */

 char start_of_epoch[64];

 int horizontal_datum;

 int vertical_datum;

 /* These parameters specify what corrections have been applied to the data */

 int roll_compensated; /* = GSF_COMPENSATED if the depth data has been corrected

 for roll */

int pitch_compensated; /* = GSF_COMPENSATED if the depth data has been corrected

 for pitch */

 int heave_compensated; /* = GSF_COMPENSATED if the depth data has been corrected

 for heave */

 int tide_compensated; /* = GSF_COMPENSATED if the depth data has been corrected

 for tide */

 int ray_tracing;
 /* = GSF_COMPENSATED if the travel time/angle pairs are

 compensated for ray tracing */

 int depth_calculation; /* = GSF_TRUE_DEPTHS, or GSF_DEPTHS_RE_1500_MS, applicable

 to the depth field */

 /* These parameters specify known offsets that have NOT been corrected.

 * If each of these values are zero, then all known offsets have been

 * corrected for.

 */

 gsfMBOffsets to_apply;

 /* These parameters specify offsets which have already been corrected. */

 gsfMBOffsets applied;

} gsfMBParams;
4.1.6 Sensor Parameters Record

#define GSF_MAX_SENSOR_PARAMETERS 128

typedef struct t_gsfSensorParameters

{

 struct timespec param_time;

 int
 number_parameters;

 short
 param_size[GSF_MAX_SENSOR_PARAMETERS]; /* array of sizes of param text*/

 char
param[GSF_MAX_SENSOR_PARAMETERS]; / array of parameters:

 "param_name=param_value" */

}

gsfSensorParameters;

4.1.7 Comment Record

typedef struct t_gsfComment

{

 struct timespec
comment_time;

 int

comment_length;

 char
 *comment;

}

gsfComment;

4.1.8 History Record

#define GSF_OPERATOR_LENGTH 64

#define GSF_HOST_NAME_LENGTH 64

typedef struct t_gsfHistory

{

 struct timespec history_time;

 char

host_name[GSF_HOST_NAME_LENGTH + 1];

 char

operator_name[GSF_OPERATOR_LENGTH + 1];

 char
 *command_line;

 char
 *comment;

}

gsfHistory;

4.1.9 Navigation Error Record

Note: As of GSF v1.07, the gsfNavigationError record has been replaced by gsfHVNavigationError. All newly created files should be written using gsfHVNavigationError, instead of gsfNavigationError.
typedef struct t_gsfNavigationError /* obsolete, as of GSF v1.07 */

{

 struct timespec nav_error_time;

 int
 record_id;

/* Containing nav with these errors */

 double
 latitude_error;
/* 90% CE in meters */

 double
 longitude_error;
/* 90% CE in meters */

}

gsfNavigationError;

typedef struct t_gsfHVNavigationError

{

 struct timespec nav_error_time;

 int
 record_id;

/* Containing nav with these errors */

 double
 horizontal_error;
/* RMS error in meters */

 double
 vertical_error;
/* RMS error in meters */

 char spare[4];
/* Four bytes reserved for future use */

 char *position_type;
/* 4 character string code specifying type of

 positioning system */

}

gsfHVNavigationError;

4.1.10 Swath Bathymetry Summary Record

typedef struct t_gsfSwathBathySummary

{

 struct timespec start_time;

 struct timespec end_time;

 double

min_latitude;

 double

min_longitude;

 double

max_latitude;

 double

max_longitude;

 double

min_depth;

 double

max_depth;

}

gsfSwathBathySummary;

4.1.11 Attitude Record

typedef struct t_gsfAttitude

{

 short num_measurements; /* number of attitude measurements in this record */

 struct timespec *attitude_time; /* seconds and nanoseconds */

 double *pitch; /* in degrees */

 double *roll; /* in degrees */

 double *heave; /* in meters */

 double *heading; /* in degrees */

}

gsfAttitude;

4.2 Supporting Data Structures and Definitions

4.2.1 Record Identifier

typedef struct t_gsfDataID

{

 int
 checksumFlag;
/* boolean */

 int
 reserved;

/* up to 9 bits */

 int
 recordID;

/* bits 00-11 => data type number */

/* bits 12-22 => registry number */

 int
 record_number;
/* specifies the nth occurrence of */

/* record type specified by recordID */

/* relavent only for direct access */

/* the record_number counts from 1 */

}

gsfDataID;

4.2.2 Time Structure

struct timespec

 {

time_t

tv_sec;

long

tv_nsec;

 };

4.2.3 Null values used to represent missing data

/* Define null values to be used for missing data */

#define GSF_NULL_LATITUDE
 91.0

#define GSF_NULL_LONGITUDE
 181.0

#define GSF_NULL_HEADING
 361.0

#define GSF_NULL_COURSE
 361.0

#define GSF_NULL_SPEED

 99.0

#define GSF_NULL_PITCH

 99.0

#define GSF_NULL_ROLL

 99.0

#define GSF_NULL_HEAVE

 99.0

#define GSF_NULL_DRAFT

 0.0

#define GSF_NULL_DEPTH_CORRECTOR
 99.99

#define GSF_NULL_TIDE_CORRECTOR
 99.99

#define GSF_NULL_SOUND_SPEED_CORRECTION 99.99

#define GSF_NULL_HORIZONTAL_ERROR -1.00

#define GSF_NULL_VERTICAL_ERROR

 -1.00

/* Define null values for the swath bathymetry ping array types. Note that

 * these zero values do not necessarily indicate a non-valid value. The

 * beam flags array should be used to determine data validity.

 */

#define GSF_NULL_DEPTH

 0.0

#define GSF_NULL_ACROSS_TRACK
 0.0

#define GSF_NULL_ALONG_TRACK
 0.0

#define GSF_NULL_TRAVEL_TIME
 0.0

#define GSF_NULL_BEAM_ANGLE
 0.0

#define GSF_NULL_MC_AMPLITUDE
 0.0

#define GSF_NULL_MR_AMPLITUDE
 0.0

#define GSF_NULL_ECHO_WIDTH
 0.0

#define GSF_NULL_QUALITY_FACTOR 0.0

#define GSF_NULL_RECEIVE_HEAVE
 0.0

#define GSF_NULL_DEPTH_ERROR
 0.0

#define GSF_NULL_ACROSS_TRACK_ERROR 0.0

#define GSF_NULL_ALONG_TRACK_ERROR 0.0

#define GSF_NULL_NAV_POS_ERROR
 0.0

4.2.4 Positioning System Type Codes

/* Define a set of macros that may be used to set the position type field */

#define GSF_POS_TYPE_UNKN
 “UNKN” /* Unknown positioning system type */

#define GSF_POS_TYPE_GPSU “GPSU” /* GPS Position, unknown positioning service */

#define GSF_POS_TYPE_PPSD “PPSD” /* Precise positioning service – differential */

#define GSF_POS_TYPE_PPSK “PPSK” /* Precise positioning service – kinematic */

#define GSF_POS_TYPE_PPSS “PPSS” /* Precise positioning service – standalone */

#define GSF_POS_TYPE_PPSG “PPSG” /* Precise positioning service - gypsy */

#define GSF_POS_TYPE_SPSD “SPSD” /* Standard positioning service – differential */

#define GSF_POS_TYPE_SPSK “SPSK” /* Standard positioning service – kinematic */

#define GSF_POS_TYPE_SPSS “SPSS” /* Standard positioning service – standalone */

#define GSF_POS_TYPE_SPSG “SPSG” /* Standard positioning service - gypsy */

GSFLib Documentation
i
GSF Version 2.04

SAIC doc 98-16c

30 June 2006

_1000805764.doc
��

 gsfPercent

 gsfStringError

 gsfPrintError

 gsfIndexTime

 gsfIsStarboardPing

 gsfGetNumberRecords

gsfGetSwathBathyBeamWidths

gsfGetSwathBathyArrayMinMax

gsfHeader

gsfSingleBeamPing

gsfSVP

gsfProcessingParameters

gsfSensorParameters

gsfComment

gsfHistory

gsfHVNavigationError

gsfSwathBathySummary

gsfSwathBathyPing

gsfLoadScaleFactors

gsfLoadDepthScaleFactorAutoOffset

gsfGetMBParams

gsfPutMBParams

gsfGetScaleFactors

Application Software

gsfMBParams

Processing

Parameters

gsfDataID

gsfRecords

gsfRead

gsfWrite

gsfClose

gsfSeek

gsfOpen

gsfOpenBuffered

Information

Memory

Management

gsfFree

gsfCopyRecords

gsfScaleFactors

Scale Factor

Information

Index File

GSF Data File

GSF Library Data Structures

