
Compressed Land Mask (clm) and Compressed Topographic Elevation
(cte) File Formats and Associated Library

Background

The compressed land mask (clm) and compressed topographic elevation (cte) files are built from Shuttle
Radar Topography Mission 3 (SRTM3), SRTM30, and GTOPO30 data files. In both cases the data
has been compressed twice. First using bit packing or a combination of delta coding and bit packing
and, second, using the zlib compression library. Additionally the cte files are stored using the huge_io
functions. These are functions that allow the use of "files" larger than 2GB on both Linux/UNIX and
Windows. The functions were developed prior to broad support for large files on Linux and prior to
any large file support on Windows. The huge_io functions still have a couple of advantages over using
large files. First, it's easier to distribute files on DVD and, second, since Microsoft doesn't follow the
POSIX standards for large file support in their C compiler, you don't have to mod your code to work
on different OSes. Note that huge_io files are actually directories containing a config file (ASCII file
containing the total size of the aggregate huge_io file) and one or more approximately 2GB files with the
name hugefile.nnn, where nnn is a number starting at 000 and going up to 032.

Compressed Land Mask (clm) File Format

The data in the compressed land mask (clm) file is stored as follows:

Header - 16384 bytes, ASCII

[HEADER SIZE] = 16384
[CREATION DATE] =
[VERSION] =
[ZLIB VERSION] =
[END OF HEADER]

One-degree map - 64800 * 4 bytes, binary, stored as characters.

Records start at 90S,180W and proceed west to east then south to north (that is, the
second record is for 90S,179W and the 361st record is for 89S,180W). Record contains
0 if all water, 1 if all land, 2 if undefined, or address if both land and water.

Data - 1's and 0's

3 bits - resolution, 0 = one second mask, 1 = 3 second mask, 2 = 30 second mask, others
TBD
29 bits - size of the zlib level 9 compressed block (SB)
SB bytes - data

The data is stored as a series of single bits for water (0) and land (1). Each bit represents
a one second, three second, or thirty second cell in the block. The block is a one-degree
square. It will be 3600 X 3600, 1200 X 1200, 120 X 120, or 60 X 60 depending on the
resolution. It is ordered in the same fashion as the srtm3 data, that is, west to east
starting in the northwest corner and moving southward. The compression is
compliments of the ZLIB compression library which can be found at
http://www.zlib.net/. Many thanks to Jean-loup Gailly, Mark Adler, and all others
associated with that effort.

Note that since all of the data is stored as characters or unsigned characters there are no endian
issues. These files work equally well on both big and little endian systems.

Compressed Topographic Elevation (cte) File Format

The data in the compressed topographic elevation (cte) files is stored as follows:

Header - 16384 bytes, ASCII

[HEADER SIZE] = 16384
[CREATION DATE] =
[VERSION] =
[ZLIB VERSION] =
[END OF HEADER]

One-degree map - 64800 * 36 bits, double precision integer, stored as characters.

Records start at 90S,180W and proceed west to east then south to north (that is, the
second record is for 90S,179W and the 361st record is for 89S,180W). Record contains
0 if all water, 1 if all land, 2 if undefined, or address if both land and water.

Data -

3 bits - Not used (originally planned for resolution in mixed files)
30 bits - size of the zlib level 9 compressed block (SB)
31 bits - size of the uncompressed block
SB bytes - data

Inside the compressed block the data has already been delta coded and bit packed. The
format of the data stored in the compressed block is as follows:

16 bits - signed short, starting value, stored as characters
16 bits - signed short, bias value, stored as characters
4 bits - number of bits used to store delta coding offsets (NB)
NB bits - first offset
NB bits - offset from first
NB bits - offset from second
.
.
.
NB bits - last offset (may be the 12,960,000th, 1,440,000th, or 14,400th offset
depending on resolution)

Undefined values (-32768) will be stored as (int) pow (2.0L, NB) - 1 and will not be used in the
delta chain.

The deltas are computed by subtracting the previous valid value from the current value. The

data is traversed west to east for one row, then east to west for the next row, then west to east,
etc. I call this the snake dance (named after the lines at Disney World ;-) After the delta is
computed the bias is added to it.

Again, there are no endian issues with this data.

CLM Library Functions

The clm data file (srtm_mask.clm) was created using the srtm3_mask.c and gtopo30_mask.c programs
(in that order). It can be accessed from C or C++ using the libsrtm library. The environment variable
SRTM_DATA must point to the directory containing the srtm_mask.clm file. The functions provided
are:

NV_INT32 read_srtm_mask_one_degree (NV_INT32 lat, NV_INT32 lon, NV_U_BYTE **array)

/***\
* *
* Module Name: read_srtm_mask_one_degree *
* *
* Programmer(s): Jan C. Depner *
* *
* Date Written: September 2006 *
* *
* Purpose: Reads the SRTM compressed landmask file (*.clm) and *
* returns a one-degree single dimensioned array *
* containing 0 for water and 1 for land. The *
* width/height of the array is returned. *
* *
* Arguments: lat - degree of latitude, S negative *
* lon - degree of longitude, W negative *
* array - mask array *
* *
* Returns: 0 if the cell is all water, 1 if it's all land, *
* 2 if it's undefined, or the width/height of array *
* if it's mixed land and water (it's square). The *
* array will only be populated for mixed land and *
* water. *
* *
* Caveats: The array is one dimensional so the user/caller *
* must index into the array accordingly. The data is *
* stored in order from the northwest corner of the *
* cell, west to east, then north to south so the last *
* point in the returned array is the southeast *
* corner. See pointlat and pointlon in the following *
* example code: *
* *
* *
* #include "read_srtm_mask.h" *
* *
* NV_U_BYTE *array; *
* NV_INT32 size; *
* NV_FLOAT64 inc, pointlat, pointlon; *
* *
* size = read_srtm_mask_one_degree (lat, lon, &array);*
* if (size > 2) *
* { *
* inc = 1.0L / size; *
* for (i = 0 ; i < size ; i++) *
* { *
* pointlat = (lat + 1.0L) - i * inc; *
* for (j = 0 ; j < size ; j++) *
* { *
* pointlon = lon + j * inc; *

* //DO SOMETHING WITH array[i * size + j] *
* } *
* } *
* cleanup_srtm_mask (); *
* } *
* *
* *
* You should call cleanup_srtm_mask after you are *
* finished using the database in order to close the *
* open file and free the associated memory. *
* *
* *
***/

NV_INT32 read_srtm_mask (NV_FLOAT64 lat, NV_FLOAT64 lon)

/***\
* *
* Module Name: read_srtm_mask *
* *
* Programmer(s): Jan C. Depner *
* *
* Date Written: September 2006 *
* *
* Purpose: Reads the SRTM compressed landmask file (*.clm) and *
* returns a value indicating whether the nearest *
* point in the mask is land, water, or undefined. *
* *
* Arguments: lat - latitude degrees, S negative *
* lon - longitude degrees, W negative *
* *
* Returns: 0 = water, 1 = land, 2 = undefined (this shouldn't *
* happen). *
* *
***/

Note that read_srtm_mask has not been thoroughly tested.

CTE Library Functions

There are two cte "files". These are srtm3_topo.cte and srtm30_topo.cte. They were created using the
srtm3_topo.c and srtm30_topo.c programs respectively. These can be accessed from C or C++ using
the libsrtm library. The environment variable SRTM_DATA must point to the directory containing
the srtm3_topo.cte and srtm30_topo.cte directories. The functions provided are:

NV_INT32 read_srtm_topo_one_degree (NV_INT32 lat, NV_INT32 lon, NV_INT16 **array)

/***\
* *
* Module Name: read_srtm_topo_one_degree *
* *
* Programmer(s): Jan C. Depner *
* *
* Date Written: October 2006 *
* *
* Purpose: Reads the 1, 3, and/or 30 second SRTM compressed *
* topographic elevation files (*.cte) and returns a *
* one-degree single dimensioned array containing the *
* elevations in the same format as the srtm3 data *
* files (see Caveats below). The width/height of the *
* array is returned, that is, 3600 for 1 second data, *
* 1200 for 3 second data, or 120 for 30 second data. *
* *
* Arguments: lat - degree of latitude, S negative *
* lon - degree of longitude, W negative *
* array - topo array *
* *
* Returns: 0 for all water cell, 2 for undefined cell, or *
* 120/1200/3600 (width/height of array, it's square). *
* *
* Caveats: The array is one dimensional so the user/caller *
* must index into the array accordingly. The data is *
* stored in order from the northwest corner of the *
* cell, west to east, then north to south so the last *
* point in the returned array is the southeast *
* corner. See pointlat and pointlon in the following *
* example code: *
* *
* *
* #include "read_srtm_topo.h" *
* *
* NV_INT16 *array; *
* NV_INT32 size; *
* NV_FLOAT64 inc, pointlat, pointlon; *
* *
* size = read_srtm_topo_one_degree (lat, lon, &array);*
* if (size > 2) *
* { *
* inc = 1.0L / size; *
* for (i = 0 ; i < size ; i++) *
* { *
* pointlat = (lat + 1.0L) - i * inc; *
* for (j = 0 ; j < size ; j++) *
* { *
* pointlon = lon + j * inc; *

* //DO SOMETHING WITH array[i * size + j] *
* } *
* } *
* } *
* *
* *
* You should also call cleanup_srtm_topo after you *
* are finished using the database in order to close *
* the open files and free the associated memory. *
* *
* *
***/

NV_INT16 read_srtm_topo (NV_FLOAT64 lat, NV_FLOAT64 lon)

/***\
* *
* Module Name: read_srtm_topo *
* *
* Programmer(s): Jan C. Depner *
* *
* Date Written: October 2006 *
* *
* Purpose: Reads the 1, 3, and/or 30 second SRTM compressed *
* topographic elevation files (*.cte) and returns the *
* elevation value. If the value is undefined at that *
* point it will return -32768. For water it will *
* return 0. *
* *
* Arguments: lat - latitude degrees, S negative *
* lon - longitude degrees, W negative *
* *
* Returns: 0 = water, -32768 undefined, or elevation *
* *
***/

Note that the above two calls will give you the best resolution data for the area or point requested. If
you wish to force using only 1, 3, or 30 second data, replace srtm with srtm1, srtm3, or srtm30 in the
function call and the include file name. For example:

 #include "read_srtm30_topo.h"

 NV_INT16 *array;
 NV_INT32 size;
 NV_FLOAT64 inc, pointlat, pointlon;

 size = read_srtm30_topo_one_degree (lat, lon, &array);
 if (size > 2)
 {
 inc = 1.0L / size;
 for (i = 0 ; i < size ; i++)
 {
 pointlat = (lat + 1.0L) - i * inc;
 for (j = 0 ; j < size ; j++)
 {
 pointlon = lon + j * inc;

 //DO SOMETHING WITH array[i * size + j]
 }
 }
 cleanup_srtm_mask ();
 }

Note that read_srtm_topo, read_srtm1_topo, read_srtm3_topo, and read_srtm30_topo have not been
thoroughly tested.

Jan C. Depner

25 October 2006

jan.depner@navy.mil

