How Ocean Mixing Can Influence Global Sea Level and Climate

Sarah Gille

Scripps Institution of Oceanography and Department of Mechanical and Aerospace Engineering UCSD, La Jolla, CA

20th Century Steric Sea Level Rise

Levitus, 1998

Steric Sea Level Rise (spatial distribution)

Causes and Uncertainties in Sea Level Rise

Total Sea Level Rise: 1.84±0.35 mm/year [Douglas, 2001; Peltier, 2001]

Steric sea level rise: 0.55 mm/year [Antonov, 2002] Ice melt: 0.2 mm/year to 0.6 mm/year [IPCC: Church et al., 2001]

Missing sea level rise: 0.7 to 1.1 mm/year

Objectives: How Can Mixing Influence Sea Level?

- Mixing heat within the ocean no flux across boundaries
- Mixing heat/CO₂ downwards into the ocean heat/gas input from atmosphere
- Other implications of mixing water mass transformation

Computing sea level: dependence on density

sea level =
$$\int_{z_0}^{0} g\rho dz$$
 $\rho = \rho(T, S, p)$

In practice:

$$\Delta \text{sea level} = \frac{1}{g} \int_{p_o}^{p_s} \Delta \delta dp$$

where δ is specific volume anomaly.

T-S diagram: The effects of cabbeling

T, S, and p all contribute to ρ .

Along-isopycnal diffusion of heat in the ocean

Vertical mixing of heat

Impact of vertical mixing

Evolution of global sea surface due to vertical mixing

Implications

- Vertical and horizontal mixing rates can influence sea level estimate uncertainties. Mixing lowers sea level.
- Serious implications for tracking sea level rise: mapping T and S is like mixing, and can lower sea level.
 More data means more mixing.
- If no additional heat causes problems, what happens when the atmosphere over top is changing as well?

Sokolov et al. (1997, 1998): Sea level rise depends on mixing rate

Couple Atmosphere-Ocean Model

- 2-D Climate-Chemistry in Atmosphere
- Zonal mean ocean with mixed layer
- Heat uptake by ocean:

$$-K_v = 1 \text{ cm}^2 \text{ s}^{-1}$$

 $-K_v = 5 \text{ cm}^2 \text{ s}^{-1}$

$$-K_v = 25 \text{ cm}^2 \text{ s}^{-1}$$

— carbon diffusion coefficients = 1.5 K_v

Sokolov et al. (1997, 1998): Sea level rise depends on mixing rate

Sokolov et al. (1997, 1998)

Upper ocean vs deep ocean

- Sea level changes due to mixing mostly related to upper ocean
- Roughness related mixing largest in deep ocean
- What are deep ocean implications for variable mixing?

Heywood et al. (2002)

Heywood et al. (2002): extent of $\gamma = 28.31$ water

Heywood et al. (2002)

$$V(\theta_u - \theta_i) = -AK \frac{\partial \theta}{\partial z}$$

where

- V is volume transport
- θ_u is upwelling potential temperature
- θ_i is inflowing potential temperature A is area
- K is diapycnal diffusivity
- $K = 39 \pm 10$ to 79 ± 45 cm² s⁻¹

Summary

- Mixing the ocean lowers sea level, even without cooling or evaporation
- When heat and CO₂ can diffuse into ocean, high mixing corresponds to deep penetration of heat. That increases sea level (and increases CO₂ storage in ocean.)
- Mixing also influences rate of bottom water changes, as well as indirectly affecting dynamics.

Mixing rates will influence forecasts for future climate.