http://topex.ucsd.edu/gmtsar/tar/GMTSAR_2ND_TEX.pdf

GMTSAR:

An InSAR Processing System Based on Generic Mapping Tools

(Second Edition)

David Sandwell*Rob Mellors † Xiaopeng Tong *‡ Xiaohua Xu*Matt Wei $^{\$}$ Paul Wessel ¶

May 1, 2011; Revised: June 1, 2016

Contents

1	Introduction 1.1 Objectives and limitations of GMTSAR 1.2 Algorithms: SAR, InSAR, and the need for precise orbits 1.2.1 Proper focus 1.2.2 Transformation from geographic to radar coordinates	5 5 6 7 8
	1.2.3Image alignment1.2.4Flattening interferogram - no trend removal	9 10
2	Software	11
	2.1 Standard Products	11
	2.2 Software Design	12
3	Processing Examples	14
	3.1 Two-pass processing	15
	3.2 Stacking for time series	18
	3.3 ScanSAR Interferometry	26
4	Problems	32
A	Principles of Synthetic Aperture Radar	33
	A.1 Introduction	33
	A.2 Fraunhoffer diffraction	34
	A.3 2-D Aperture	37
	A.4 Range resolution (end view)	20 20
	A.6 Range and Azimuth Resolution of FRS SAR	40
	A.7 Pulse repetition frequency	40
	A.8 Other constraints on the PRF	40
	A.9 Problems	42
B	SAR Image Formation	44
	B.1 Overview of the range-doppler algorithm	44
	B.2 Processing on board the satellite	44
	B.3 Digital SAR processing	45
	B.4 Range compression	49
	B.5 Azimuth compression	51
	B.0 Example with ALOS L-band orbit	50 61
		01
С	InSAR	62
	C.1 Forming an interferogram	62
	C.2 Contributions to Phase	63
	C.3 Phase due to earth curvature	64 65
	C.4 LOOK angle and incluence angle for a spherical earth	03 67
		\mathbf{U}

	C.6 C.7 C.8 C.9	Persistent point scatterer and critical baseline	68 69 70 70
	C.10	Problems	74
D	Scan	SAR Processing and Interferometry	75
	D.1	Problems	80
Е	Sent	inel TOPS-mode processing and interferometry	81
	E.1	Introduction	81
	E.2	Traditional Image Alignment Fails with TOPS-Mode Data	83
	E.3	Geometric Image Registration	84
	E.4	Enhanced Spectral Diversity	86
	E.5	Elevation Antenna Pattern (EAP) Correction (IPF version change)	87
	E.6	Examples of TOPS Interferogram processing	87
	E.7	Processing setup and commands:	97
	E.8	Problems	99
F	Geol	ocation accuracy for Pinon corner reflectors	100
G	Insta	illation of GMTSAR	107

amplitude and phase

10 km

range

azimuth

step 1 - SAR (amplitude)

step 2 - InSAR (phase difference)

coherence and pixel matching

The illumination pattern on the screen is shown in the following diagram.

The first zero crossing, or angular resolution θ_r of the sinc function occurs when the argument is π so $\sin \theta_r = \frac{\lambda}{L}$ and for small angles $\theta_r \cong \lambda/L$ and $\tan \theta_r \cong \sin \theta_r$. Note that

resolution: optical vs. microwave

$$D_s = 2H\sin\theta_r = 2H\frac{\lambda}{L}$$

H = 800 km.

Optical : L = 1m $\lambda = 0.5 \mu m$ $D_s = 0.8m$

Microwave : L = 10m $\lambda = 0.23m$ $D_s = 46,000m!!!!!!!$

Notes on BB

range resolution

- θ look angle
- H spacecraft height
- τ pulse length
- C speed of light

$$R_r = \frac{C\tau}{2\sin\theta}$$

azimuth resolution

- *L* length of radar antenna
- ρ nominal slant range $H/\cos\theta$
- λ wavelength of radar

unfocussed focussed

$$R_a = \rho \sin \theta_r = \rho \lambda / L$$
 $R_a' = \frac{\lambda H}{2R \cos \theta} = \frac{L}{2}$

`a

Pulse Repetition Frequency

Minimum PRF (Lower Bound)

- PRF needs to be high enough to sample the entire Doppler spectrum to avoid aliasing
- PRF defines the Nyquist frequency
- Maximum Doppler shift must be less than the Nyquist

Maximum PRF (Upper Bound)

 Echo from far range of first pulse must return before the echo from near range of second pulse

SAR processor

amplitude image

1) This is an image of radar backscatter from a stack of ERS SAR data. The flight path is top to bottom and the radar looks from the right. The area is the Salton Sea and Cochella Valley, and the tic marks are spaced at 10 km. The satellite is 7159717m from the center of the Earth, the local Earth radius is 6371593 m, and the range to the center of the image is 850148 m. Calculate the look angle to the center of the image. Identify areas of layover. What is the minimum mountain slope in the areas of layover? Why is the Salton Sea dark'

zoom of amplitude image

2) This is a zoom of the previous image with 5 km tic marks. Use a map to identify each of the three curved lines running through the images. Why do the fields have different backscatter? Why aren't the fields exactly square? Why do the bright spots have cross patterns?

Magellen SAR

1990-1994

Magellen SAR 1990-1994

Radar Image Properties

SLOPE

ROUGHNESS

REFLECTIVITY

slope

pancake domes Venus

roughness

lava flows Venus

reflectivity

Maxwell Montes Venus

reflectivity - Venus

 What is the illumination pattern for an aperture with a sign reversal at its center? What is P(0)? Is the function real or imaginary? Is the function symmetric or asymmetric?

The aperture is

$$A(y) = \begin{cases} 0 & |y| > \frac{L}{2} \\ 1 & 0 < y \le \frac{L}{2} \\ -1 & -\frac{L}{2} \le y < 0 \end{cases}$$

3) What is the theoretical azimuth resolution of a spotlight-mode SAR that can illuminate the target over a 10° angle as shown in the diagram below.

- 5) What is the ground-range resolution of side-looking radar with a pulse length of 6x10⁻⁸ s and a look angle of 45°?
- 6) (a) What is the period for a satellite in a circular orbit about the moon where the radius of the orbit is 1.9x10⁶ m? The mass of the moon is 7.34x10²² kg.
 (b) You are developing a SAR mission for the moon. The length of your SAR antenna is 10 m. What minimum pulse repetition frequency is needed to form a complete aperture? The circumference of the moon is 1.1x10⁷m. You will need the orbital period from problem (a).

Next Lecture SAR Interferometry InSAR