
CHAPTER 10
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Since we require only to calculate the velocity increments, without consideration of how these are 
achieved, we may consider a body (rocket, satellite etc) of fixed mass m. To prove equation (10.2), 
consider the total energy (kinetic plus potential) of the body at A, just after it has been given 
velocity ∆v1. The kinetic energy is

1
2

m Δv1
2

and the gravitational potential energy is

−G M m
RE

.

The body comes to rest at B, so its kinetic energy is zero and its potential energy is

−G M m
R

.

Equating the total energies at A and B gives the required result:

Δ v1
2=2G m( 1

RE

− 1
R ) .

To prove equation (10.3), we need only to calculate the speed v of a body in a circular orbit of 
radius R. This is easily done by equating the gravitational force

G M m

R2

to the centripetal force

mv 2

R
.

Thus

Δ v2
2=G M

R

as required.

To prove equation (10.4) and (10.5) we need to find the elliptical transfer orbit between the Earth's 
surface and the desired circular orbit of radius R. If the velocity of the body when it is grazing the 
Earth's surface is ∆v1 the total energy is

1
2

m Δv1
2−G M m

R E



as before. When the body reaches B, conservation of momentum dictates that its speed must be 
given by

RE Δv1

R

so its total energy is given by

m R E
2 Δ v1

2

2 R2
−G M m

R
.

Equating the two energies gives

Δ v1
2= 2G R M

RE (R+R E)

as required for equation (10.4). 

The speed of the body in the circular orbit of radius R is

√ GM
R

 

and the speed in the elliptical orbit at B is

RE

R
Δ v1=√ 2G RE M

R (R+R E)
,

so the increment needed at B is

Δ v2=√ GM
R

−√ 2GR E M

R (R+RE)

as required.

2

Equation (10.10) shows that the largest angular error will be approximately 2e. This proves the 
result.
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We are considering the descending (southbound) part of the satellite's orbit. For definiteness, let us 
assume that the orbit crosses the Prime (Greenwich) meridian in the southbound direction at 09:30 
UT. We need to find when and where it crosses latitude 52˚ north, again travelling southwards. 
Equation (10.11.1) shows that

sin ϕ= sin 52 ˚
sin 98.2˚

so φ = 127.236˚. (We resolve the ambiguity in taking the inverse sine by noting that the satellite 
must have made between a quarter and a half of an orbit around the earth since it passed through the 
ascending node.) Thus the satellite crosses latitude 52˚ earlier than it crosses the equator by a 
fraction

180−127.236
360

=0.14657

of an orbit. The orbital period is 16/233 days so this time interval is equal to

0.14657×16
233

days=14.493 minutes .

The time at which the satellite crosses latitude 52˚ is thus 09:30 – 14.493 minutes = 09:15:30 UT. 
However, we need to calculate the local time so we need to know the longitude of the satellite too.  
This is given by equation (10.11.2) as

l=l0+atan2( tan 52 ˚
tan 98.2 ˚

,
cos127.236 ˚

cos52 ˚ )=l 0+atan2 (−0.18444,−0.98284 )= l0−169.371˚ .

Thus the satellite moved (180-169.371) = 10.629 degrees west, relative to a fixed orientation, 
during these 14.493 minutes. However, the Earth also rotated through

14.493×360
1440

=3.625  

degrees east during the same period, so relative to the Earth's surface the satellite moved 14.254˚ 
west. Thus, at 09:15:30 UT the satellite was at longitude 14.254˚ east, where the local time was

09:15:30+14.254
15

hours=10:12:31.
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(i) The angular frequency of precession is

Ω p=−2.01280×10−6 cos98.52 ˚
1.122517/2 s−1=1.990×10−7s−1

which is very close to the Earth's angular speed around the Sun. Thus the orbit is at least close to 
being Sun-synchronous.

(ii) The nodal period of the satellite is

P N=5069.3×1.122513/2(1+1.62395×10−3(1−4 cos298.52 ˚)
1.122512 )s=6035.9s .

Thus, using equation (10.18), the number of orbits per repeat cycle is given by

35×86400
6035.9

=501.0

and we conclude that the exactly repeating orbit makes 501 revolutions every 35 days.

(iii) In exactly one day, the track makes

501
35

=14.314

orbits. The nearest integer to this is 14, and the time taken to make exactly 14 orbits is

14×35
501

=0.978days .

Thus after 14 orbits the Earth has rotated through 0.978 × 360˚ = 352.10˚ to the east, so the satellite 
has moved 352.10˚ west relative to the Earth's surface. This is equivalent to having moved 7.90 
degrees east. Since the value of ∆l is 360/501 = 0.719˚, we see that the satellite's longitude is indeed 
+11 ∆l after one day.

Repeating the calculation for three days, we find that the number of orbits is 42.94 after exactly thee 
days so the nearest integer is 43. The time taken to make exactly 43 orbits is 3.00399 days, so the 
eastward motion of the satellite in this time is -0.00399 × 360 = -1.44˚
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(i) We can use equations (10.19) to (10.21) to calculate the velocity of the subsatellite point relative 
to the Earth's surface. We also need to know the satellite's orbital period and precession rate. These 
are given by equations (10.13) and (10.14) as

P N=6746s
and

Ω p=−4.21×10−7s−1

respectively. For simplicity, we will calculate the velocity for a point on the equator. From (10.19),  
we have

db
d ϕ

=0.9135 .

From (10.20), we find

v N=5427 ms−1

and from (10.21),

v E=−468+2417=1949 ms−1 .

Thus the ascending path at the equator makes an angle of about 20˚ east of north. The descending 
path therefore makes an angle of about 160˚ east of north, so the acute angle between the tracks is 
about 40˚. This is not 'perfect' for an altimetric orbit (which would give an angle of 90˚) but is 
reasonable.

(ii) We need to find whether the orbital path repeats itself exactly. Equation (10.17) shows how to 
do this. We have PN = 6746 s, Ωp = -4.21 × 10-7 s-1 and Ωe = 2π/81864 = 7.2921 × 10-5 s-1 so

n1

n2

=
PN (Ωe−Ωp)

2π
=0.07874.

To find values of n1 and n2 that satisfy this equation we can use the Octave function rat, which is 
used to find a rational approximation:

>>> [n,d]=rat(0.07874,0.00001)
n =  10
d =  127
>>> 

This shows that 0.07874 ≈ 10/127, within a tolerance of 0.0001, so we conclude that the orbit 
repeats every ten days and the observation frequency is 0.1 measurements per day. This is not ideal 
for observing tidal phenomena since (for example) the 12-hour tidal period will be aliased to a 
frequency of zero (i.e. every observation at a particular location will be at the same phase of the 
tide.) 


