
CHAPTER 7
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We can calculate the effective areas from the directivities using equations (7.5) and (7.9):

Ae=
λ 2D
4 π

. (a)

For the rectangular aperture the directivity in dB is given by

11+10log10(a b /λ
2)

so the directivity is

D=101.1 a b
λ2 =12.6a b

λ2

and, from (a), the effective area is 1.00 ab, equal to the geometrical area.

For the circular paraboloidal antenna the directivity is given by

10 d
2

λ2

so, from (a), the effective area is 0.80 d2. The cross-sectional area of the dish is (π/4)d2 = 0.79 d2, so 
the areas are again very similar.
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The discussion in section 7.1.3 shows that the phase shift between adjacent antenna elements is

k d sin θ0

where k is the wavenumber of the radiation, d is the separation of the elements and θ0 is the beam 
steering angle. Since the addition of integer multiples of 2π to the phase makes no physical 
difference to it, it follows that the antenna will also respond in the direction θ, where

sinθ=sin θ0+
nλ
d

where n is any integer. 

(a) In this case, λ/d = 1.5, so provided that

sin θ0>0.5

the antenna will have a second response corresponding to n = -1.

(b) In order to avoid these multiple responses, λ/d must be  at least 2. In this case, when sin θ0 has 
its largest possible value of +1, the next largest value of sin θ is less than -1 and thus cannot occur.
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The observed brightness temperature will be an area-weighted average of the different species 
present in the antenna's footprint. (This follows from the Rayleigh-Jeans approximation.) If we 
write fw, ff and fm for the proportions of open water, first-year ice and multi-year ice present in the 
footprint, we obtain the following three equations:

f w+ f f + f m=1

(we assume that no other species are present in the footprint)

80 f w+252 f f+200 f m=180
and

119 f w+253 f f +168 f m=180

These equations are straightforward to solve. Here the solution is calculated using Octave:

>>> A=[1 1 1;80 252 200;119 253 168]
A =

     1     1     1
    80   252   200
   119   253   168

>>> v=[1; 180; 180]
v =

     1
   180
   180

>>> x=A\v
x =

   0.30371
   0.31626
   0.38003

>>> 

This shows the fractions to be 0.304 for water. 0.316 for first-year ice and 0.380 for multi-year ice.
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If the fraction of the footprint occupied by ice is f, the antenna temperature, in kelvin,  is

253 f +119(1− f )=119−134 f .

Setting this equal to 119-0.9, to represent the smallest detectable difference from the brightness 
temperature due to water alone, we find that f = 0.00672.

The beam solid angle is given by

ΩA=
λ2

Ae
=2.19×10−4 sr

so the area of the footprint on the earth's surface is

8002×2.19×10−4 km 2=140 km2 .

Thus the area of the smallest detectable floe is

0.00672×140 km2=0.94 km2 .
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First, plot the points W, M and F corresponding to water, first-year and multi-year ice and connect 
these points by straight lines (shown in black). These lines represent 0% concentration of the 
corresponding material: for example, the line connecting M and W represents 0% first-year ice.

Next, draw regularly spaced lines parallel to these 0% contours. In the diagram here, the blue lines 
show the water concentration in 10% steps, the red lines show the first-year ice concentration and 
the green lines the concentration of multi-year ice, again both in steps of 10%.

Now plot the points (i) and (ii) corresponding to the two cases described in the problem. By 
measuring from the graph, and comparing with the concentration contours, we find the following 
concentrations:

(i) 19% water, 75% first-year ice, 6% multi-year ice
(ii) 46% water, 22% first-year ice, 31% multi-year ice

A low value of PR implies that the emissivities of the two kinds of ice are similar in both 
polarisations, as can be seen in figure 7.9. A low value of GR implies that the emissivity of first-
year ice is similar for 19V and 37V radiation. Again, this can be seen in figure 7.9.
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Since we are considering microwave radiation, we can assume the Rayleigh-Jeans approximation to 
be valid in which case we can use equation (3.96). The optical thickness between the surface and 
some altitude z is

τ '=∫
0

z

γ dz=τ (1−e−β z )

and if we substitute this expression into (3.96) we can identify the weighting function a(z) as

a (z )=τβ e−β z−τe−β z

.

This is slightly easier to deal with if we take logarithms:

ln (a ( z ))=ln τ+ln β−β z−τ e−β z .

To find the value of z at which a(z) is maximum, we differentiate this expression with respect to z:

∂ ln (a( z))
∂ z

=−β+τβe−β z .

Setting this equal to zero gives

z= ln τ
β

as required.

To show that the effect of changing τ (at fixed β) is to shift a(z) along the zaxis without change of 
scale, we need to show that

a (z−z0, τ*)=a ( z , τ)

for all values of τ. Thus we need to show that the equation

ln τ+lnβ−β z−τ e−β z=ln τ*+ lnβ−β( z− z0)−τ*e−β( z− z0)

can be satisfied for all values of τ. It is straightforward to demonstrate that this is valid provided that

τ* eβ z0=τ

This result implies that, provided our simple model of the height-dependence of the absorption 
coefficient is valid, the vertical resolution of the sounder is independent of the height being 
sounded.


