
CHAPTER 2
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(a) The direction of propagation is along the positive x-axis (this can be seen from the phase term)

(b) The radiation is elliptically polarised. Equations (2.12) and (2.13) become

E y=E0y cos (ω t−k x−ϕy)

and

E z=E0z cos(ω t−k x−ϕz)

respectively in a rotated coordinate system, so we have E0y=E , E0z=2E , ϕy=0  and 
ϕz=π/2 . Thus ϕz−ϕy=π/2 and the radiation is right-hand polarised (in the convention used 

for radio waves).

(c) The magnetic field B  is given by

B y=−
E z
c

and

Bz=
E y
c

This gives the correct ratio of the magnetic field amplitude to the electric field amplitude, and also  
ensures that the cross product E×B points in the propagation direction, i.e. along the positive x-
axis.

(d) From (2.15), the flux density of the radiation is 5 E2 /(2Z 0) = 6.6 kW m–2.
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For example, using the Stokes vectors given in section 2.2, we find the following values of the 
detected power

polarisation state Stokes vector Detected power
random [1 0 0 0] 1
x-linear [1 1 0 0] 2
y-linear [1 -1 0 0] 0
+45˚ linear [1 0 1 0] 1
-45˚ linear [1 0 -1 0] 1
RHC [1 0 0 1] 1
LHC [1 0 0 -1] 1
RHE [1 0.6 0 0.8] 1.6
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Using the hint, we see that the term eh f /k T−1 that occurs in the denominator of the Planck 
formula can be approximated as hf/kT. 

4 The formula for the ratio is

eh f / k T2−1

eh f / k T1−1
= e

h c / λk T 2−1

eh c / λ k T1−1

where T1 = 6000 K and T2 = 300 K.

(a) at a wavelength of 0.1 µm the ratio is 
e480.1−1
e24.01−1

 ≈ 10198. 

(b) at a wavelength of 1 µm the ratio is 
e48.01−1
e2.401−1

≈ 1020. 

(c) at a frequency of 1000 GHz the ratio is 
e0.1600−1
e0.00800−1

≈ 22.

(d) at a frequency of 1 GHz the ratio is 
e1.600×10−4

−1

e8.00×10−6

−1
= 20.

All of these expressions can be evaluated directly using Octave, although most electronic 
calculators will have some difficulty in evaluating them. The answers to (a) and (b) show that 
thermal emission can almost always be ignored with respect to reflected solar radiation, where 
present, at near-infrared and shorter wavelengths. The answer to (d) shows that the Rayleigh-Jeans 
approximation is valid at this frequency.
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From (2.18) we can write the Fourier transform as

a (ω)= 1
2π ∫

−∞

∞

exp(−( t− t0)
2

2σ 2 −iω t)d t
Substitute

z=
t−t0
σ √2

+ iωσ
√2

to obtain

a (ω)=σ √2
2 π ∫

−∞

∞

exp(−z 2)exp(− iω t02
−ω2 σ2

2 )d z .

This can be rearranged as

a =[ 2
2

∫
−∞

∞

exp−z2dz ]exp− i t02
−

2 2

2 
where everything inside the square brackets evaluates to a constant (although we don't need to know 
this to answer the question, its value is /2 ) and the part outside the brackets is a Gaussian 
function of ω. The width of this Gaussian function is 1/σ, and the phase factor exp (-iωt0/2) arises 
from the fact that the original function was centred not on t=0 but on t=t0.


