
CHAPTER 8
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Figure 8.7 shows a dry-atmosphere zenith correction of about 2.35 m for a wavelength of 1 µm, so 
for a path that passes through 1-0.26 = 0.74 atmospheres at an angle of 45˚,  the estimated 
correction is

2.35×0.74
cos 45 ˚

=2.46 m .

Figure 8.8 shows a water vapour correction of about 0.35 m per metre of precipitable water, or 
about 0.018 m for a vertical path through the entire atmosphere. If we assume that all of the water 
will be found below 10000 m, the only correction needed is to multiply by 1/cos(45˚) to account for 
the oblique path, so the correction needed for water vapour is approximately 0.025 m.
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The time taken for one complete back-and-forward scan of the mirror is 1/fs, during which the 
aircraft moves forward a distance v/fs. This is the maximum distance between adjacent samples in 
the along-track direction, so the average distance is v/2fs.

sa=
v

2 f s

The time taken to make one sweep of the swath is 1/2fs, so the number of samples collected across 
the swath is f0/2fs. The swath width w is 2Hθ (we are using the small-angle approximation), so the 
cross-track spacing of the samples is

sc=
2 H θ

f 0 /2 f s

=
4 H θ f s

f 0

.

(i) The condition on the across-track sampling can be rewritten as

sc=
2w f s

f 0

<1 m

so the swath width w is given by

w<16650 m /s
f s

(a)

where we have used the fact that f0 = 33300 Hz. Thus the condition that w should be as large as 
possible is equivalent to requiring the scan frequency fs is as small as possible.

The condition on the along-track sampling interval, sa < 1 m, can be rewritten using our earlier 
result, and the fact that the speed v = 70 m, as

f s>35 Hz . (b)

This shows that the lowest consistent value of the scan frequency is 35 Hz, and from (a) the 
maximum swath width w is 476 m.

(ii) There are two constraints on the value of the scan angle θ:

θ<0.35 radian
and

θ< 14 Hz
f s

=0.4 radian .

Thus the maximum value of the scan angle is 0.35 radians. Since the value of Hθ is known to be 
237.9 m, this gives the minimum value of H as 680 m.

It is preferable to minimise the flying height in order to maximise the signal-to-noise ratio of the  
return signal, which will tend to increase the precision of the measurements.
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The answer to the first part of the question follows the derivation given in section 8.2.1.

At a pulse repetition frequency p and platform speed v, the number of pulses within the footprint is

N =
2 (c H t p)

1/2 p
v

.

The range accuracy of a single pulse can be taken as

c t p

2

so the accuracy obtained by averaging the N pulses across the footprint is given by

c t p

2 N 1/2 =( c3 t p
3 v2

64 H p2 )
1 /4

as required.

Using the values given in the problem, and taking v  ≈ 7 km/s and H ≈ 800 km, we can estimate the 
best vertical resolution as around 2 cm.
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From equation (8.16), the time-differential of the return pulse is the convolution of the transmitted 
pulse with the surface height distribution converted to a time distribution through the factor c/2. 
Thus we have two Gaussians, with widths to the 1/e points of 3.00 ns and 6.67 ns. The convolution 
of these is another Gaussian, with a width to the 1/e points of (3.002 + 6.672)1/2 = 7.31 ns. Thus the 
rise time of the return pulse from 8% to 92% of the final value is 7.31 ns.
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Suppose the radar is located a height H above the mean surface, and consider a scatterer a radial 
distance r from the nadir point and height h above the mean surface. Its distance from the radar is 
approximately

H + r 2

2 H
−h

so a signal received from the scatterer at time t must have been emitted at time-differ

t−2
c (H + r2

2 H
−h) .

If we can write the number of scatterers between r and r + dr and between h and dh as

k r f (h)dr dh

(the r dr part accounts for the area of surface and the f(h) dh part for the distribution of scatterers 
with height), the received power at time t is given by

Pr=k ∫
r=0

∞

∫
k =−∞

∞

P t (t−2 H
c

− r 2

H c
+2 h

c )r f (r )dr dh .

Change the r variable to

s=t− 2 H
c

− r2

H c

so that the expression for the received power becomes

Pr=
k H c

2 ∫
s=−∞

t−2 H /c

∫
h=−∞

∞

P t (s+2 h
c ) f (h)ds dh .

Differentiating this expression with respect to s gives the required result.
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(i) The propagation delay in each case is proportional to the column-integral of the density of the 
molecular species responsible for it. In the case of the dry atmosphere component, this is 
proportional to the pressure difference between the top and bottom of the path; for a path that 
originates above the atmosphere it is thus simply proportional to the pressure at the bottom of the 
path.  Water vapour, on the other hand, is not well mixed in the atmosphere so that the density of the 
vapour along the path is not necessarily proportional to the atmospheric density at that point. In 
such a case, the column-integral of the density can be usefully expressed as the depth of precipitable 
water.

(ii) The proof that the ionospheric delay is given by

e2 N t

8π2 ϵ0me f 2

is given in section 8.2.6 and earlier.

(iii) For the conditions given in the question, the dry-atmosphere delay is

2.33×0.970=2.260m

and the water vapour delay is

7.10×0.15=1.065m .

The ionospheric delay can be rewritten as

4.031( N t

1017 m−3 )( f
GHz )

−2

m .

Thus the measurement at 3.2 GHz is consistent with a true range R to the surface of

R=793125.20±0.10−2.260−1.065−0.394 N t=793121.88±0.10−0.394 N t

and the measurement at 13.6 GHz is consistent with

R=793123.35±0.05−2.260−1.065−0.022 N t=793120.03±0.05−0.022 N t

where in both equations R is measured in metres and Nt is measured in units of 1017 m-3. To find R, 
we eliminate  Nt to give

R=793119.92±0.05 m .

To find Nt we equate the two expressions to give

N t=(5.0±0.3)×1017 m−3 .
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First, find the Fourier transform of the original chirp signal:

a (ω)= 1
2π ∫

−T /2

T /2

e
i(ω0 t '+Δω

2 T
t ' 2)

e−iω t ' dt ' .

The signal that emerges from the delay-line is therefore, in frequency representation,

a ' (ω)= 1
2 π ∫

−T / 2

T / 2

e
i(ω0 t '+ Δω

2 T
t '2−

ω0T

Δω
ω− T

2Δω
ω2)

e−i ω t ' dt ' .

To retransform into the time domain will require the following operation:

f (t )=∫
−∞

∞

a' (ω)e i ω t d ω .

In order to evaluate this integral we first rearrange it:

f (t )= 1
2π ∫

−T / 2

T / 2

e
i(ω0 t '+ Δω

2 T
t ' 2)∫

−∞

∞

e
i([t− t '−

ω0T

Δω ]ω− T
2Δω

ω2)
d ω .

The second integral, over ω, can be evaluated by completing the square. It is

√ 2 π i Δ ω
T

e
−i Δω

2 T ( t−t ' −
ω0T
Δω )

2

so inserting this result into the first integral and simplifying it gives

f (t )= 1
2π √ 2π i Δω

T
e

i(−ω0
2
T

2Δω
+ω0t−Δ ω

2T
t 2) ∫

−T /2

T /2

e
i Δω

T
t '

dt ' .

The integral over t' is just

T sinc( t Δω
2 ) ,

so this is the modulating function. It is centred at t=0 and falls to zero when

t=± 2π
Δω

.

The only one of the phase terms (before the integral) that is not negligible is the term

eiω0 t

which is the carrier wave term.


