
CHAPTER 6

1

We have

sin a= sin 40 ˚
n

b=60 ˚ −a
sin c=nsin b

and the total deviation of the ray is c – 20˚. For n = 1.601 we obtain

a = 23.671˚
b = 36.329˚
c = 71.524˚

giving a deviation of 51.524˚. For n = 1.569, the values are

a = 24.185˚
b = 35.815˚
c = 66.655˚

giving a deviation of 46.655˚. The range of deviations is thus 4.87˚.
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From equation (2.24), the spectral irradiance at the surface can be written as

E λ=Lλ , S ΔΩcosθ

where Lλ , S is the spectral radiance from the Sun, ΔΩ is the solid angle subtended by the sun, 
and θ is the incidence angle of the radiation. Equation (3.45) shows that the BRDF of the surface is  
1/π in all directions, so from equation (3.37) the reflected spectral radiance is

Lλ ,out=
Lλ , S ΔΩcosθ

π .

Setting

Lλ ,S=
2 h c2ϵS

λ5 (eh c /λ k T S−1)

where ϵS and TS are, respectively, the sun's emissivity and temperature, and

Lλ ,out=
2 h c2

λ5 (e h c /λ k T b−1)
,

where Tb is the brightness temperature of the reflected radiation, gives

eh c /λ k T b−1= π
ϵS ΔΩcos θ

(eh c /λ k T S−1) .

Substituting the values  ΔΩ = 6.76 × 10-5 sr,  ϵS = 0.99 and  TS = 5800 K gives Tb ≈ 330 K at 4 
µm and 150 K at 10 µm.
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Equation (6.6) shows that

T 1=T be−τ+T 0 (1−e−τ )

so

e−τ=
T 1−T 0

T b−T 0

Similarly equation (6.7) shows that

T 2=T b e−2 τ+T 0 (1−e−2 τ )

so

e−2 τ=
T 2−T 0

T b−T 0

.

Thus

(T 2−T 0

T b−T 0
)=(T 1−T 0

T b−T 0
)

2

which is easily rearranged to give the required result

T b=
(T 1−T 0)

2

T 2−T 0

+T 0 .

Substituting the values given in the problem yields Tb = 285.25 K.

(i) The sensitivities are found by differentiating:

∂T b

∂T 0

=
(T 1−T 0)(T 0+T 1−2T 2)

(T 2−T 0)
2

+1 .

This is evaluated as 1.5625, so an uncertainty of ± 1 K in T0 will give an uncertainty of about 1.6 K 
in the calculated value of Tb. Similarly,

∂T b

∂T 1

=
2(T 1−T 0)

T 2−T 0

which we evaluate as 14. Thus the calculated value of Tb is almost ten times as to uncertainty in T1 

as to T0. 

(ii) The assumption that the Earth's curvature can be ignored does not introduce significant error 
into this calculation, as discussed on pages 117-8. However, the Rayleigh-Jeans approximation is 
not valid in the infrared region, and it is also not particularly reasonable to assume that the 
atmospheric temperature is uniform.



4

Differentiate equation (6.10) with respect to  z and equate to (6.11), to give the thermal diffusion 
equation

∂2T
∂ z2 =C ρ

K
∂T
∂ t

. (a)

This can be solved conveniently by using complex exponential notation. Substituting a wave-like 
solution

T =Ae i(ω t−k z) (b)

into the diffusion equation gives

k 2= i ωC ρ
K

and hence

k=√ ωC ρ
2 K

(1−i) (c) 

Substituting (b) into equation (6.10) gives

F=i k K Aei(ω t−k z)

so if we set

F 0=i k K A

we obtain the solutions

F=F 0e i(ω t−k z)

and

T =
F 0

i k K
ei (ω t−k z ) .

Finally we substitute for k from (c) and take the real parts of the expressions to obtain the results we 
require:

F=F 0 cos(ω t−z √ ωC ρ
2 K )e

− z √ωCρ
2 K

and

T =
F 0

√ωC ρ K
cos(ω t−z √ ωC ρ

2 K
−π

4 )e
− z √ωC ρ

2 K .
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The phase angle between the incoming solar flux and the surface temperature fluctuations is given 
by

ϕ=2.3
24

2π=0.602 radians

and from equation (6.19) we see that this phase angle is given by

cot ϕ=1+α√ 2
ρc K ω

.

Thus

α√ 2
ρ c K ω

=0.455 (a)

and hence substituting the other data given in the question, and taking ω = 7.29 × 10-5 s-1, we obtain

ρc K =4.01×106J 2 m−4s−1 K−2

(i.e. the thermal inertia is around 2000 in SI units). 

Again using equation (6.19), we see that the magnitude of the ratio of the flux variations to the 
temperature variations is

(α2+α√2ρc K ω+ρc K ω )1/2
=α(1+√2ρc K ω

α +ρc K ω
α2 )

1/ 2

.

Using our result from (a), we find the ratio to be

α(1+ 2
0.455

+ 2
0.4552 )

1/2

=3.88α

so using the value of α given in the question, and taking the amplitude of the temperature 
fluctuations as 23 K, we find the amplitude of the flux fluctuations to be 491 K.

Finally, to interpret the value of α we can use equation (6.18), which shows that it corresponds to 
value of emissivity of close to 1 if the mean surface temperature is 290 K.
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Substitute the expression for γ(h) into equation (6.30):

τ=γ0 √ R
2 ∫h0

∞ e−β h

√h−h0

d h .

Now make the substitution

z=√h−h0

to give

τ=γ0 √2 R e−β h0∫
0

∞

e−β z2

dz .

Recalling that

∫
0

∞

e−β z2

dz=1
2 √ π

β

gives

τ=γ0 e−βh0√ π R
2β

from which the required result follows immediately.

Rearranging this expression to make h0 the subject gives

h0=
1
β ln ( γ0

τ √ π R
2β )

so substituting the values given in the question (and taking τ = 2.303 and R = 6378 km) yields h0 = 
5.0 km.
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If the band 6 output is 145, we know that

16.03(L+3.2)+1=145

where L is the at-satellite radiance in W m-2 sr-1 µm-1. Thus L = 5.78 W m-2 sr-1 µm-1, and equation 
6.9) gives the at-satellite brightness temperature as 269.8 K. The physical temperature of the surface 
is 273.15 K (since it consists of ice and water), and if we assume that the emissivity of the surface is 
very close to 1 this means that the at-surface brightness temperature of the surface is also 273.15 K. 
Thus the effect of atmospheric propagation is to contribute around -3.4 K to the measured 
brightness temperature. We expect typical atmospheric corrections to be a few kelvin, so this value 
is not surprising.


