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FOURIER TRANSFORM METHODS  
David Sandwell, January, 2013 

 
1. Fourier Transforms 
 
Fourier analysis is a fundamental tool used in all areas of science and engineering.  The fast 

fourier transform  (FFT) algorithm is remarkably efficient for solving large problems.  Nearly 

every computing platform has a library of highly-optimized FFT routines.  In the field of Earth 

science, fourier analysis is used in the following areas:  

 

Solving linear partial differential equations (PDE’s): 

 Gravity/magnetics  Laplace ∇2Φ = 0 

 Elasticity (flexure) Biharmonic ∇4Φ = 0 

 Heat Conduction Diffusion ∇2Φ - δ Φ/ δt = 0 

 Wave Propagation Wave ∇2Φ - δ2Φ/ δt2 = 0  

 

Designing and using antennas: 

 Seismic arrays and streamers 

 Multibeam echo sounder and side scan sonar 

 Interferometers – VLBI – GPS  

 Synthetic Aperture Radar (SAR) and Interferometric SAR (InSAR) 

 

Image Processing and filters: 

 Transformation, representation, and encoding 

 Smoothing and sharpening 

 Restoration, blur removal, and Wiener filter 

 

Data Processing and Analysis: 

High-pass, low-pass, and band-pass filters 

Cross correlation – transfer functions – coherence 

Signal and noise estimation – encoding time series 
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Figure 1.1 Cartesian coordinate system used throughout the book with z  positive up.  The z = 0  
plane is the surface of the earth.  Fourier transforms deal with infinite domains while the fourier 
series (section 1.6) has finite domains.  For our numerical examples we will select an area of 
length L and with W consisting of uniform cells of size Δx  and Δy .  This can be represented as a 
2-D array of numbers with J = L /Δx columns and I =W /Δy  rows. 
 

1.1 Definitions of fourier transforms 

The 1-dimensional forward and inverse fourier transforms are defined as: 

 

  

 F k( ) = f x( )
−∞

∞

∫ e−i2πkxdx      or     F k( ) =ℑ f x( )%& '(  (1.1) 

 f x( ) = F k( )
−∞

∞

∫ ei2πkxdk      or    f x( ) =ℑ−1 F k( )%& '(  (1.2) 

 

where x  is distance and k is wavenumber where k =1/ λ and λ is wavelength.  We also use the 

shorthand notation introduced by Bracewell [1978].  These equations are more commonly 

written in terms of time t  and frequency ν  where ν =1/T  and T  is the period.   The 2-

dimensional forward and inverse fourier transforms are defined as:  

 

 F k( ) = f x( )
−∞

∞

∫
−∞

∞

∫ e−i2πk•xd 2x      or      F k( ) =ℑ2 f x( )%& '(  (1.3) 
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 f x( ) = F k( )
−∞

∞

∫
−∞

∞

∫ ei2πk•xd 2k    or    f x( ) =ℑ2
−1 F k( )%& '(  (1.4) 

 
where x = x, y( )  is the position vector, k = kx,ky( )  is the wavenumber vector, and 

k • x = kxx + kyy .  The magnitude of the spatial wavenumber β = kx
2 + ky

2( )
1/2

 is used often in later 

chapters.  For several of the derivations, we’ll also take the fourier transform in the z-direction 

(i.e. 3-D transform) using the following notation. 

 

 F kz( ) = f z( )
−∞

∞

∫ e−i2πkzzdz  (1.5) 

 f z( ) = F kz( )
−∞

∞

∫ ei2πkzzdkz  (1.6) 

 
Fourier transformation with respect to time is also sometimes used to form a 4-D transform. 

 

 F ν( ) = f t( )
−∞

∞

∫ e−i2πνtdt  (1.7) 

 f t( ) = F ν( )
−∞

∞

∫ ei2πνtdν  (1.8) 

 
While algebraic manipulation of equations in 4-D is sometimes challenging and error prone, 

we’ll use computers to help us in two ways.  We’ll use the tools of computer algebra to solve the 

most challenging algebraic manipulations associated with the 3-D and 4-D problems in chapter 

4.  In addition we’ll provide a FORTRAN subroutine called fourt() which can perform numerical 

fourier transforms in N-dimensions although we’ll use only 1-, 2-, and 3-D numerical transforms 

in this book. 

 

1.2 Fourier sine and cosine transforms 

Here we introduce the sine and cosine transforms to illustrate the transforms of odd and even 

functions.   Also in later chapters we’ll use sine and cosine transforms to match asymmetric and 

symmetric boundary conditions for particular models.   
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Any function f x( )  can be decomposed into odd O x( ) and even E x( ) functions such that  

 

 f x( ) = E x( )+O x( )  (1.9) 

 

where E x( ) = 1
2
f x( )+ f −x( )"# $%  and O x( ) = 1

2
f x( )− f −x( )"# $% .  Note the complex exponential 

function can be written as  

 

 eiθ = cos θ( )+ isin θ( )  (1.10) 

 

Exercise 1.1 Use equation (1.10) to show that cos θ( ) = 1
2
eiθ + e−iθ( ) and sin θ( ) = 1

2i
eiθ − e−iθ( ) . 

 

Using this expression (1.10) we can write the forward 1-D transform as the sum of two parts 

 

 F k( ) = f x( )
−∞

∞

∫ cos 2πkx( )dx − i f x( )
−∞

∞

∫ sin 2πkx( )dx  (1.11) 

 

After inserting equation (1.9) into this expression and noting that the integral of an odd function 

times an even function is zero, we arrive at the expressions for the cosine and sine transforms. 

 

 F k( ) = 2 E x( )
0

∞

∫ cos 2πkx( )dx − 2i O x( )
0

∞

∫ sin 2πkx( )dx  (1.12) 

 

Throughout this book we’ll be dealing with real-valued functions.  From equation (1.12) it is 

evident that the cosine transform of a real, even function is also real and even.  Also the sine 

transform of a real odd function is imaginary and odd.  In other words when a function in the 

space domain is real valued, its fourier transform F k( ) has a special Hermitian property 

F k( ) = F −k( )* so one can reconstruct the transform of the function with negative wavenumbers 

from the transform with positive wavenumbers.  Later when we perform numerical examples 
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using real valued functions such as topography, we can use this Hermitian property to reduce the 

memory allocation for the fourier transformed array by a factor of 2.  This is important for large 

2-D and 3-D transforms. 

 

1.3 Examples of Fourier Transforms 

Throughout the book we will work with only linear partial differential equations so all the 

problems are separable and the order of differentiation and integration is irrelevant.  For example 

the 2-D fourier transform of is given by 

 

 F kx,ky( ) = f x, y( )e−i2πkxx dx
−∞

∞

∫
$

%
&

'

(
)

−∞

∞

∫ e−i2πkyydy = f x, y( )e−i2πkyy dy
−∞

∞

∫
$

%
&

'

(
)

−∞

∞

∫ e−i2πkxxdx  (1.13) 

 

Note that this 2-D transform consists of a sequence of 1-D transforms.  This property can be 

extended to 3-D, 4-D and even N-D; each transform can be performed separately and 

independently of the transforms in the other dimensions.  In the following analysis we’ll only 

show examples of 1-D transforms but the extension to higher dimensions is trivial. 

 

Delta function – By definition the delta function has the following property; 

 

 f x( )
−∞

∞

∫ δ x − a( )dx ≡ f a( )  (1.14) 

 

under integration it extracts the value of f x( ) at the position x = a .  One can describe the delta 

function as having infinite height at zero argument and zero height elsewhere.  The area under 

the delta function is 1.  In terms of pure mathematics the delta function is not a function and only 

has meaning when integrated against another function.  In this book we use the delta function as 

a powerful tool, provided to us by the mathematicians, so we trust all the mathematical theory 

behind it.  What is the fourier transform of a delta function?  By definition if one performs a 

forward transform of a function followed by an inverse transform, or vice versa, one will arrive 

back with the original function.  Lets try this using the delta function.  By definition, the inverse 

transform of a delta function is 
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 δ k − ko( )
−∞

∞

∫ ei2πkxdk = ei2πkox  (1.15) 

 

Next lets take the forward transform of equation (1.15).  The left hand side will be the delta 

function because we have performed an inverse and forward transform.  The right hand side is 

given by  

 

 δ k − ko( ) = ei2πkox
−∞

∞

∫ e−i2πkxdx = e−i2π k−ko( )x dx
−∞

∞

∫  (1.16) 

 

This result shows that the fourier basis functions are orthonormal.  If we consider the special 

case of ko = 0we see that the fourier transform of a delta function is ℑ δ k( )"# $%=1 .  Since fourier 

transformation is reciprocal in distance x and wavenumber k, it is also true that ℑ δ x( )"# $%=1 .  The 

delta function and its fourier transform provide an amazingly powerful tool for solving linear 

PDEs. 

 

Cosine and sine functions – Lets use the delta function tool and the expressions from Exercise 

1.1 to calculate the fourier transform of a cosine function having a single wavenumber 

cos 2πk0x( ) . 

 

 cos 2πkox( )
−∞

∞

∫ e−i2πkxdx = 1
2

ei2πkox + e−i2πkox +( )
−∞

∞

∫ e−i2πkxdx = 1
2
δ k − ko( )+δ k + ko( )$% &'  (1.17) 

 

So the fourier transform of a cosine function is simply two delta functions located at ±ko . 

 

Exercise 1.2 Show that the Fourier transform of sin 2πk0x( ) is 1
2i

δ k − ko( )−δ k + ko( )"# $% . 
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Gaussian function – The Gaussian e−π x
2

function also plays a fundamental role in solutions to 

several types of PDEs. Its fourier transform is 

 

 F k( ) = e−π x
2

e−i2πkx
−∞

∞

∫ dx = e
−π x2+i2kx( )

−∞

∞

∫ dx  (1.18) 

 

Note that x + ik( )2 = x2 + i2kx( )− k2 .  Using this we can rewrite equation (1.18) as 

 

 F(k) = e−πk
2

e−π x+ik( )2

−∞

∞

∫ dx = e−πk
2

e−π x+ik( )2

−∞

∞

∫ d x + ik( ) = e−πk
2
 (1.19) 

 

where we have used the result that the infinite integral of e−π x
2

is 1.  This is a remarkable and 

powerful result that the fourier transform of a Gaussian is simply a Gaussian.   
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Figure 1.2 Schematic plots of 1-D fourier transform pairs. Solid line is real-valued function 

while dashed line is imaginary valued function (figure from Bracewell [1978]. 

 

1.4 Properties of fourier transforms 

There are several properties of fourier transforms that can be used as tools for solving PDEs.  

The first property called the similarity property says that if you scale a function by a factor of a 

along the x-axis, its fourier transform will scaled by a−1  along the k-axis and the amplitude will 

be scaled by a −1 . 
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Exercise 1.3 Use the definition of the fourier transform equation (1.1) and a change of variable 

to show the following.  Try positive and negative values for a to understand why the absolute 

value is needed in the amplitude scaling. 

 

 ℑ f ax( )"# $%=
1
a
F k

a
&

'
(
)

*
+  (1.20) 

 
The shift property says that the fourier transform of a function that is shifted by a along the x-

axis equals the original fourier transform scaled by a phase factor.  This property is especially 

useful for numerically shifting a function a non-integer amount of the data spacing along the 

axis. 

 

Exercise 1.4 Use the definition of the fourier transform and a change of variable to show the 

following 

 

 ℑ f x − a( )#$ %&= e
−i2πkaF k( )  (1.21) 

 

The derivative property of the fourier transform is the essential tool used in this book to 

transform linear PDEs into algebraic equations that are easily solved.  It states that the fourier 

transform of the derivative of a function is the fourier transform of the original function scaled 

by the imaginary wavenumber. 

 

 ℑ
∂f
∂x
#

$%
&

'(
= i2πkF k( )  (1.22) 

 

To show this is true we start with the inverse transform of equation (1.22) 

 

 ∂f
∂x

= i2πk
−∞

∞

∫ F k( )ei2πkxdk  (1.23) 

 

Next take the forward transform of equation (1.23) and rearrange terms 
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 ℑ
∂f
∂x
#

$%
&

'(
= i2πko

−∞

∞

∫
−∞

∞

∫ F ko( )ei2πkoxdkoe−i2πkxdx = i2πko
−∞

∞

∫ F ko( ) e−i2π k−ko( )x

−∞

∞

∫ dx
,
-
.

/
0
1
dko  (1.24) 

 

The term in the curly brackets is the delta function δ k − ko( )given in equation (1.16).  The result 

is 

 

 ℑ
∂f
∂x
#

$%
&

'(
= i2πko

−∞

∞

∫ F ko( )δ k − ko( )dko = i2πkF k( )  (1.25) 

 

The final property considered here is the convolution theorem which states that the fourier 

transform of the convolution of two functions is equal to the product of the fourier transforms of 

the original functions. 

 

 ℑ f u( )g x −u( )du
−∞

∞

∫
%

&
'

(

)
*= F k( )G k( )  (1.26) 

 

To show this is true one can perform the fourier integration on the left side of equation (1.26) 

and rearrange the order of the integrations 

 

 ℑ f u( )g x −u( )du
−∞

∞

∫
%

&
'

(

)
*= f u( )g x −u( )du

−∞

∞

∫
%

&
'

(

)
*

−∞

∞

∫ e−i2πkxdx = f u( ) g x −u( )e−i2πkx dx
−∞

∞

∫
+
,
-

.
/
0−∞

∞

∫ du (1.27) 

 
Next use the shift property of the fourier transform to note that the function in the curly brackets 

on the right side of equation (1.27) is e−i2πkuG k( ) .   The result becomes 

 

 ℑ f u( )g x −u( )du
−∞

∞

∫
%

&
'

(

)
*=G k( ) f u( )

−∞

∞

∫ e−i2πkudu = F k( )G k( )  (1.28) 
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Note that these 4 properties are equally valid in 2-dimensions or even N-dimensions. The 

properties also apply to discrete data.  See Chapter 18 in Bracewell [1978]. 

 

 


