Climate Application: Aerosol Direct Radiative Forcing

Alex Kuwano
SIOG 135/236
Spring 2018
Background Information

- SW – shortwave
- LW - longwave

Figure 1

Just Right!
Background Information

- AOD – Aerosol optical depth
 \[\tau = \int_z^\infty k_{abs} \rho_a \, dz \]

- ADRE – Aerosol direct radiative effect
 \[\text{ADRE} = (F_{aer,up} - F_{aer,down}) - (F_{0,up} - F_{0,down}) \]
 \[F_{aer,up} = \text{Upward Flux with aerosols} \]
 \[F_{aer,down} = \text{Downward Flux with aerosols} \]
 \[F_{0,up} = \text{Upward Flux without aerosols} \]
 \[F_{0,down} = \text{Downward Flux without aerosols} \]

- FE – Aerosol forcing efficiency
 \[FE = \frac{d \text{ADRE}}{d \tau} \]
Background Information

- Aerosols increase scattering of SW radiation
- Aerosols can decrease outgoing LW radiation
Eastern China (20-40°N, 110-125°E) between March and October 2009

\[ADRE = F_{0,TOA} - F_{aer,TOA} \]

- TOA – top of the atmosphere
- Normalization of \(F_{aer,TOA} \) – due to effects of solar zenith angle, water vapor, surface albedo, and Sun-Earth distance

On the use of a satellite remote-sensing-based approach for determining aerosol direct radiative effect over land: a case study over China

A.-M. Sundström¹, A. Arola², P. Kolmonen³, Y. Xue⁴, G. de Leeuw¹,³, and M. Kulmala¹

¹Department of Physics, University of Helsinki, Helsinki, Finland
²Finnish Meteorological Institute, Kuopio, Finland
³Finnish Meteorological Institute, Helsinki, Finland
⁴Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing, China

Correspondence to: A.-M. Sundström (anu-maija.sundstrom@helsinki.fi)
Clouds and the Earth’s Radiant Energy System (CERES) on Terra
- Latitude, longitude, $F_{\text{aer,TOA}}$, 550 nm AOD, and precipitable water

Aerosol Robotic Network (AERONET)
- Single scattering albedo (SSA)

MODerate Imaging Spectroradiometer (MODIS) Land Cover Type Climate Modeling Grid product (MCD12C1)
- Identify in-land water bodies
- Provide SW broadband black-sky albedo \rightarrow input for UVSPEC radiative transfer model

UVSPEC
- Determine ADRE diurnal variation and model $F_{0,\text{TOA}}$ for later comparison
Figure 5.
- Left – without normalizing
- Right – after normalizing

(Sundström, et al., 2015)
Application Papers – Sundström, et al.

- Figure 12.
 - Top row – instantaneous median ADRE
 - Middle row – 24hr averaged median ADRE
 - Bottom row – median AOD
Application Papers – Peris-Ferrús, et al.

- Western Mediterranean during a dust storm on June 23, 2008
- Heating rate profile, Aerosol Heating Rate (AHR), and surface and TOA ADRE
 - \[ADRE = F_{aer}(z) - F_0(z) \]
 - \[\frac{\Delta T(z)}{\Delta t} = -\frac{g}{c_p} \frac{\Delta F_{net}(z)}{\Delta p} \]
 - \[AHR = \left(\frac{\Delta T(z)}{\Delta t} \right)_{AER} - \left(\frac{\Delta T(z)}{\Delta t} \right)_0 \]

Heating rate profiles and radiative forcing due to a dust storm in the Western Mediterranean using satellite observations

C. Peris-Ferrús, J.L. Gómez-Amo*, C. Marcos, M.D. Freile-Aranda, M.P. Utrillas, J.A. Martínez-Lozano

Dpt. Earth Physics and Thermodynamics, University of Valencia, Burjassot, Spain

Highlights

- We analyze the radiative impact of a dust storm through satellite observations and detailed radiative transfer modeling.
MODIS on Aqua
 - Retrievals of AOD and Angström exponent
Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) on CALIPSO
 - Retrievals of aerosol extinction profile
AERONET
 - Aerosol size distribution, SSA, and asymmetry parameter
MODerate spectral resolution atmospheric TRANsmission (MODTRAN) radiative transfer model
 - Inputs: aerosol extinction profile, asymmetry parameter, and AOD
Table 3.
- Instantaneous surface and TOA ADRE and FE
- Gray – land-sea surface pixels

<table>
<thead>
<tr>
<th>Latitude (°N)</th>
<th>SW ARF (Wm⁻²)</th>
<th>SW FE (Wm⁻²)</th>
<th>LW ARF (Wm⁻²)</th>
<th>LW FE (Wm⁻²)</th>
<th>TOA SW ARF (Wm⁻²)</th>
<th>TOA SW FE (Wm⁻²)</th>
<th>TOA LW ARF (Wm⁻²)</th>
<th>TOA LW FE (Wm⁻²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>36.5</td>
<td>-59.2</td>
<td>-169.1</td>
<td>10.1</td>
<td>28.9</td>
<td>-7.3</td>
<td>-20.9</td>
<td>5.5</td>
<td>15.8</td>
</tr>
<tr>
<td>37.5</td>
<td>-97.2</td>
<td>-190.6</td>
<td>13.7</td>
<td>27.0</td>
<td>-23.9</td>
<td>-46.9</td>
<td>4.8</td>
<td>9.4</td>
</tr>
<tr>
<td>38.5</td>
<td>-111.6</td>
<td>-214.6</td>
<td>13.9</td>
<td>26.9</td>
<td>-27.8</td>
<td>-53.4</td>
<td>5.4</td>
<td>10.4</td>
</tr>
<tr>
<td>39.5</td>
<td>-55.1</td>
<td>-183.7</td>
<td>7.8</td>
<td>26.3</td>
<td>-10.4</td>
<td>-34.6</td>
<td>3.4</td>
<td>11.6</td>
</tr>
<tr>
<td>40.5</td>
<td>-101.0</td>
<td>-198.0</td>
<td>12.0</td>
<td>23.8</td>
<td>-22.3</td>
<td>-43.7</td>
<td>6.5</td>
<td>12.8</td>
</tr>
<tr>
<td>41.5</td>
<td>-61.2</td>
<td>-185.5</td>
<td>7.4</td>
<td>23.5</td>
<td>-9.6</td>
<td>-29.1</td>
<td>4.9</td>
<td>15.4</td>
</tr>
</tbody>
</table>

(Peris-Ferrús, 2017)
Application Papers – Peris-Ferrús, et al.

- Figure 6.
 - 36 – 38°N
 - a) extinction profiles
 - b) AHR in SW
 - c) AHR in LW

(Peris-Ferrús, 2017)
Data Processing so far...

- Solar Insolation (W/m2), TOA SW Upward Flux (W/m2), and AOD
 - Spatially averaged
 - CERES and MODIS (filtered for dust AOD)
- Sahara Desert in 2016
 - Excludes February 19th – 27th
Data Processing so far...

- Time series of Solar Insolation, TOA SW Upward Flux, and AOD
Data Processing so far...

- Scatter plot of AOD and TOA SW Upward Flux
- Linear fit between AOD and TOA SW Upward Flux

\[FE = -97.6 \text{ W/m}^2/\text{unit of AOD} \]
\[F_{0,\text{TOA}} = 79.8 \text{ W/m}^2 \]
Thank you!
References

- https://mynasadata.larc.nasa.gov/what-is-the-earths-radiation-budget/

