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Abstract. Closely spaced satellite altimeter profiles collected during the Geosat Geodetic Mission (-6 
km) and the ERS 1 Geodetic Phase (8 km) are easily converted to grids of vertical gravity gradient and 
gravity anomaly. The long-wavelength radial orbit error is suppressed below the noise level of the 
altimeter by taking the along-track derivative of each profile. Ascending and descending slope profiles 
are then interpolated onto separate uniform grids. These four grids are combined to form comparable 
grids of east and north vertical deflection using an iteration scheme that interpolates data gaps with 
minimum curvature. The vertical gravity gradient is calculated directly from the derivatives of the 
vertical deflection grids, while Fourier analysis is required to construct gravity anomalies from the two 
vertical deflection grids. These techniques are applied to a combination of high-density data from the 
dense mapping phases of Geosat and ERS 1 along with lower-density but higher-accuracy profiles from 
their repeat orbit phases. A comparison with shipboard gravity data shows the accuracy of the satellite- 
derived gravity anomaly is about 4-7 mGal for random ship tracks. The accuracy improves to 3 mGal 
when the ship track follows a Geosat Exact Repeat Mission track line. These data provide the first view 
of the ocean floor structures in many remote areas of the Earth. Some applications include inertial 
navigation, prediction of seafloor depth, planning shipboard surveys, plate tectonics, isostasy of 
volcanoes and spreading ridges, and petroleum exploration. 

Introduction 

Radar altimeter measurements of the marine geoid collected 
during the Seasat altimeter mission gave marine geodesists and 
geophysicists a hope of uncovering the details in the gravity field 
over all the ocean basins [Haxby et al., 1983]. However, because 
of insufficient track density, it has taken 16 years for the full 
potential of the satellite altimeter method to be realized. The 
high-density coverage obtained by ERS 1 during its geodetic 
mapping phase (April 1994 to March 1995) prompted the U.S. 
Navy to declassify all of the Geosat altimeter data on June 22, 
1995. We are grateful to the European Space Agency for 
extending the ERS 1 mapping phase so that an equatorial ground 
track spacing of 8 km could be completed. The combination of 
these two high-density data sets provided the first detailed view 
of all the ocean basins at a 10-km resolution. Considering the 
sparse shipboard coverage of many ocean areas [Smith, 1993], 
these new altimeter data are arguably the most important marine 
geology and geophysics data set collected over the past decade. 

The focus of this paper is on the efficient recovery of marine 
gravity anomalies and other derivatives of the potential using data 
from satellite altimeters having different orbital inclinations and 
different noise characteristics; no attempt is made to recover sea 
surface topography (i.e., geoid height plus ocean dynamic 
topography). After an introduction to radar altimetry and its 
inherent limitations, we discuss data availability and our recipe 
for constructing gridded gravity anomalies from altimeter 
profiles. The method (recipe) presented here is based largely on 
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previous work [Heiskanen and Moritz, 1967; Briggs, 1974; 
Haxby et al., 1983; Sandwell, 1984; Freedman and Parsons, 
1986; Haxby and Weissel, 1986; Roest, 1987; Smith and Wessel, 
1990; Rumreel and Haagmans, 1990; Haxby and Hayes, 1991; 
Sandwell, 1992; Laxon and McAdoo, 1994; Hwang and Parsons, 
1996]. We then assess the quality of the gridded data and suggest 
possible ways to improve the resolution of the gravity field along 
stacked profiles. Finally, we provide a tour of the gravity field of 
the oceans and point out a few of the new and interesting features. 
We do not attempt to review other methods for recovery of short- 
wavelength gravity information from satellite altimetry [e.g., 
Wakker et al., 1993; Cazenave et al., 1995; Andersen et al., 1995; 

Hwang and Parsons, 1995] but instead focus on our recipe, 
discuss how it was developed, and explain why certain processes 
are used. Over the next months and years our recipe may 
undergo revisions, and perhaps others will devise better recipes. 

This research has two main components. The first component, 
presented in this manuscript, is a traditional journal article with 
appendices. Appendix A covers the relationship between geoid 
height, vertical deflection, gravity gradient, and gravity anomaly. 
Appendix B covers the statistical method to estimate north and 
east vertical deflections from along-track slopes. Appendix C has 
the derivation of analytic formulae to calculate the approximate 
satellite position and velocity as a function of time since equator 
crossing and latitude. The second part of our research is more 
suitable for electronic media and will be submitted for publication 
to Earth Interactions. It contains many color images of the 
marine gravity field (http://topex.ucsd.edu); the images are 
layered so the reader can zoom in on features of interest. In 
addition, the companion electronic article contains all of the 
computer code used to construct the results shown in both papers 
as well as links to files of gridded gravity anomaly, vertical 
gravity gradient, and high-quality postscript plots of gravity 
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Figure 1. A pulse-limited radar altimeter orbits at an altitude of 
about 800 km and measures the distance to the closest ocean 

surface by recording the travel time of a pulse. A global tracking 
network along with precise orbit calculations based on the JGM-3 
gravity model [Nerem et al., 1994] is used to establish the height 
of the satellite above the reference ellipsoid (dashed curve). We 
assume the sea surface height above the ellipsoid is equal to the 
geoid height so permanent sea surface slopes associated with 
currents will appear as false anomalies in our gravity solution. 

anomaly at the General Bathymetric Chart of the Oceans map 
scale. The companion electronic paper also contains links to 
scripts illustrating the use of the gravity anomaly grids with GMT 
software [Wessel and Smith, 1995]. 

Satellite Altimetry 

A satellite altimeter uses a pulse-limited radar to measure the 
altitude of the satellite above the closest sea surface point to a 
very high precision (Figure 1). Global precise tracking coupled 
with orbit dynamic calculations provide an independent 
measurement of the height of the satellite above the ellipsoid. 
The difference between these two measurements is equal to the 
instantaneous sea surface height minus any delays in the 
propagation of the radar echo due to the ionosphere and 
troposphere. There are many errors in these measurements that 
are discussed and evaluated in a number of excellent papers 
[Nerem et al., 1994; Tapley et al., 1994; Ma et al., 1994; Visser et 
al., 1993]. Most of these errors occur over length scales of 
greater than a few hundred kilometers. They are important for 
precise oceanographic studies or studies where the geoid height is 
needed. However, because we are only interested in the gradient 
of the sea surface, the short-wavelength altimeter noise dominates 
the error budget. 

There are at least two factors that impose limits on the 
accuracy and resolution of gravity field recovery from satellite 
altimetry. First the ocean depth (-4 km) attenuates the short- 

wavelength gravity signals (equation (A9)). Consider an anomaly 
on the ocean floor with a 16-km wavelength and a 15-mGal 
amplitude (i.e., a typical value for oceans). On the ocean surface 
this anomaly will be reduced to 3.1 mGal by upward 
continuation. The second limitation is due to the short- 

wavelength noise from ocean surface waves (typically > 1 m). 
The radar pulse reflects from an area of ocean surface (footprint) 
that grows with increasing sea state [Stewart, 1985]. The 
superposition of the reflections from this area stabilizes the shape 
of the echo, but it also smooths the echo so that the timing of its 
leading edge is more uncertain. By averaging many echoes (1000 
Hz) over multiple repeat cycles, one can achieve a 10 to 20-mm 
range precision [Noreus 1995; Yale et al., 1995]. Over a distance 
of 4 km (i.e., 1/4 wavelength) this corresponds to a sea surface 
slope error of 4 grad and a gravity error of about 4 mGal 
(Appendix A). The combination of these two limitations makes it 
difficult to improve the resolution. Consider trying to improve 
the resolution by a factor of 2, upward continuation will attenuate 
the signal by an additional factor of e 2 = 7.4, so assuming a 
Gaussian error distribution, the number of measurements must be 

increased by a factor of e 4 = 55. At longer wavelengths or in 
shallower water the situation is not as bad, but nevertheless the 

roughness of the ocean surface limits the accuracy of the short- 
wavelength slope estimate. We show that ocean tides, which can 
also have a short-wavelength component especially on the 
continental shelves, are a third limiting factor in the recovery of 
the gravity field. It is surprising that other factors such as basin- 
scale dynamic ocean topography are not important; in this case 
the slope of this error is usually low (e.g., 1 m over say 3000 km 
which translates into 0.33 mGal). Sharper oceanographic steps 
associated with western boundary currents can be a significant 
error source [Gille, 1994]. 

The repeat period of the satellite orbit governs the spacing of 
the altimeter tracks on the ocean surface (Figure 2). Very long 
repeat cycles such as 168-day ERS 1 geodetic phase or the non- 
repeat (drifting) orbit of the Geosat/Geodetic Mission 
(Geosat/GM) provide the high-density coverage needed for 
complete resolution of the gravity field. The shorter repeat 
periods of 10 days for TOPEX, 17 days for Geosat, and 35 days 
for ERS 1 do not provide dense track coverage. However, the 
repeated profiles can be averaged to improve the signal-to-noise 
ratio as well as to assess the noise properties of the altimeter 
measurements. Here we do not use the TOPEX or POSEIDON 

altimeter measurements because the wide track spacing provides 
little new information. 

Along-Track Preprocessing 

The starting point for the Geosat data are geophysical data 
records (GDR) from National Oceanographic Data Center 
[Cheney et al., 1991] where the orbital information for the 
Geodetic Mission data was upgraded to the Joint Gravity Model 3 
(JGM-3) orbits [Nerem et al., 1994]. The ERS 1 ocean product 
(OPR) data [Dumont et al., 1995] were used with their original 
orbits as were the Geosat Exact Repeat Mission (Geosat/ERM) 
data. The along-track processing of the raw geophysical data 
records consists of a number of steps: edit, apply corrections, 
divide into passes, low-pass filter, resample at 5 Hz, and 
differentiate. The editing criteria were established by examining 
raw altimeter data from a variety of satellites and under a variety 
of conditions. Care is taken to remove outliers in areas of ice or 

land prior to any filtering. In the open ocean we try to retain all 
points except when the shape of the return pulse suggests that the 
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Figure 2. (a) Tracks of stacked Geosat/ERM (17-day repeat cycle) (22.5o-25 ø N), Geosat/GM (20o-22.5 ' N), ERS 1 
Geodetic Phase (168-day repeat cycle) (17.5ø-20 ø N), and stacked ERS 1 (35-day repeat cycle) (15ø-17.5N). These tracks 
show data remaining after editing and filtering. (b) Vertical gravity gradient (i.e., curvature of ocean surface) around 
Hawaii derived from all four data sets. Contours at 50 and 100 Eotvos units are shown to highlight seamount/island 
signatures. 

significant wave height (SWH) is high; these data are usually 
noisy [Yale et al., 1995]. Unfortunately, much of our 
documentation on the choice of edit thresholds is located in a 

variety of old notebooks and tapes and thus cannot be completely 
justified. 

Our editing approach examines the individual 10-Hz samples 
in relation to the best fit straight line through the 10 points as 
described by Cheney et al. [1991]. If the rms about the line is 
greater than 0.15 m for Geosat (0.25 m for ERS 1) or the SWH 
exceeds 8 m for Geosat (6 m for ERS 1), then all 10 points are 
edited. In addition, a new 2-min gridded land/water mask was 
developed using the Generic Mapping Tools (GMT) software 
package [Wessel and Smith, 1995] to eliminate frames near land 
where stray echos can contaminate the ocean data, especially 
when low-pass filters are applied. Finally, each 10-Hz point was 

compared with the best fit line. If its deviation from the line was 
more than 5 times the rms about the line, then the point was 
eliminated, a new best fit line was computed, and the points were 
tested again until they all passed or until only six points remained. 

Our primary focus is on the recovery of the short-wavelength 
gravity field information, and thus not all corrections are relevant 
or even useful. For example, corrections based on global models 
(i.e., wet troposphere, dry troposphere, ionosphere, and inverted 
barometer) typically do not have wavelength components shorter 
than 1000 km, and if their amplitude variations are less than 1 m 
they do not contribute more than 1 grad to the noise. Some 
corrections such as the electromagnetic bias can actually add 
noise [Gille, 1994]. We have found that the most important 
correction to the sea surface slope is the ocean tide and have 
determined that the Center for Space Research (CSR) composite 
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Figure 3. Absolute value of tide model slope [Eanes and Bettadpur, 1995]. Contours are at 0.5, 1, 2, 3, 4, and 5 grad. 
One grad of tidal slope error will map into -1 mGal of gravity anomaly error. Tide models are most important on some 
shallow continental margins. 

ocean tide model V3.0 [Bettadpur and Eanes, 1994; Eanes and 
Bettadpur, 1995] is superior to the tides supplied with either the 
Geosat GDRs or the ERS 10PR. Figure 3 shows the rms of the 
slope of the CSR V3.0 tide correction for a 35-day repeat cycle of 
ERS 1. Tidal slope corrections are usually small over the deep 
ocean but can be up to 6 grad over some of the shallow 
continental margins. Previous versions of the global gravity grid 
did not incorporate this tide model correction and suffered from 
track line noise on the shallow areas surrounding Great Britain as 
well as on the Falkland Plateau; the CSR V3.0 tide model vastly 
improves the gravity field recovery in these and other areas. 
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Figure 4. Prestack filters used on ERS 1 and Geosat altimeter 
data (solid). The poststack filter (dashed) is applied to all stacked 
and nonstacked profiles prior to gridding and has a 0.5 gain at a 
wavelength of 18 km. The 1-Hz boxcar filter (dashed-dot) is not 
suitable for resolving wavelengths shorter than about 30 km 
because of the large-amplitude sidelobes and slow roll-off. 
Filters were designed using the Remez routine in Matlab TM 
software. The routine is based on the Parks-McClellan finite 

impulse response filter design. 

After editing and application of corrections, the data are 
broken into passes whenever a time gap exceeds 2 s (-14 km) or 
there is a change in pass orientation (e.g., from ascending to 
descending). The passes are low-pass filtered to suppress 
altimeter noise having wavelengths shorter than 5 km for Geosat 
and 10 km for ERS 1 as shown in Figure 4 (solid curves) and the 
filtered heights are subsampled at 5 Hz. Note that the 1-Hz 
boxcar filter (dashed-dot curves) followed by a 1-Hz decimation 
(i.e., the normal 1-Hz data supplied on both the GDR and OPR) 
will cause the sinc function sidelobes to fold from wavenumbers 

greater that 0.075 (13.4 km wavelength) to much longer 
wavelengths so that there is more than 20% aliasing at 20 km 
wavelength; thus a boxcar filter should not be used and the 
sampling rate should be greater than 2 Hz and preferably 5 Hz to 
retain all signals with wavelengths greater than 20 km. 

The final and perhaps most important step in the preprocessing 
is to differentiate continuous profiles along track with respect to 
time. As shown in previous studies [e.g., Sandwell and Zhang, 
1989], this suppresses long-wavelength errors and reference 
frame shifts so data adjustments are unnecessary. For simplicity, 
and to retain the ability to integrate the profiles, a first difference 
is used for the slope estimates. For example, the difference in 
height between points 1 and 2 is divided by their time difference 
and the slope is stored in location 1. This introduces a 1/2 phase 
shift (670 m) that is removed later with a second along-track 
filter. 

Stacking 

A study of the along-track resolution capabilities of stacked 
Geosat, ERS 1, and TOPEX altimeters was recently published by 
Yale et al. [1995] using the coherence method developed by 
Brammer [ 1979] and Marks and Sailor [1986]. Example profiles 
are shown in Figure 5 and an overview of the results is given in 
Table 1. All available data were loaded into three-dimensional 

files where repeat profiles were aligned along track. Outliers 
were detected by a comparison with the median of available 
cycles, and then the stack was computed as the average of the 
survivors. To determine the resolution improvement gained by 
stacking, the first half of available repeat profiles was averaged 
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Figure 5. Individual and stacked vertical deflection profiles for a track crossing the Mid-Atlantic Ridge: (left) Geosat, 
(middle) ERS 1, (right) TOPEX. Only eight of the available cycles are shown for each satellite [from Yale et al., 1995]. 

independently from the second half prior to the coherence 
analysis. Two areas were initially selected for coherence 
analysis: the equatorial Atlantic (Area 1 in Table 1), a region with 
high tectonic signal and low oceanographic noise; and the South 
Pacific (Area 2 in Table 1), a region with low tectonic signal and 
high oceanographic variability. In all cases, along-track 
resolution is better in the equatorial Atlantic than in the South 
Pacific; Geosat and TOPEX data resolve shorter wavelengths 
than ERS 1. Global maps of along-track resolution show 
considerable geographic variation. On average globally, the 
along-track resolution (0.5 coherence) of Geosat and TOPEX 
stacks are approximately the same (24 km), while the resolution 
of ERS 1 stacks are slightly worse (30 km). However, when 
equal numbers of repeat cycles are stacked, all three altimeters 
have about the same resolution limit of 28-30 km. The resolution 
estimates show that the shortest wavelength recoverable in the 
gravity field from satellite altimetry is about 20 km. Later, we 
apply an along-track filter to all of the profile data with a 0.5 gain 
at a wavelength of 18 km (Figure 4, dashed curves). Then after 
the north and east vertical deflection grids are created, they are 
low-pass filtered in two-dimensions with a filter having a 0.5 gain 
at 19 km. 

Gridding: Accumulation, Interpolation, 
and Gravity Conversion 

Our recipe for construction of gridded gravity anomalies from 
altimeter profiles works best when the track spacing is less than 
the along-track resolution of the altimeter data. The method was 
designed to accommodate large radial orbit error, long- 
wavelength tide model error, and shifts in reference associated 
with different tracking networks. In addition, it can 
accomrnodate data with differing accuracy, resolution, and pass 
orientation (Appendix B and Figure 6). Finally, the algorithm is 
fast enough so the entire word can be gridded on a workstation in 
a reasonable time (-2 days) (206 million observations and 68 
million grid cells). We start with along-track slope estimates that 
were preprocessed and stacked as described above. The goal is to 
produce north and east vertical deflection grids that are consistent 
with the original observations to within their assigned noise level 
and where unconstrained cells reflect nearby values. The basic 
steps are (Figure 7) the following. 

1. Edit nonstacked data by comparing the height value (i.e., 
integrated slope) with a Gaussian-filtered prediction from the 
surrounding points (0.5 gain at 36 km). If the suspect height 

Table 1. Summary of Along-Track Resolution Estimates 

Area 1 

Geosat 

ERS 1 

TOPEX 

Cycle Stack 8 Stack 31 Cycle 

33 26 20 52 

38 26 - 50 

34 24 19 43 

Area 2 

Stack 8 

38 

33 

31 

Stack 31 

27 

_ 

23 

Cycle 

38 

43 

37 

Global Average 

Stack 8 

29 

30 

28 

Stack 31 

24 

_ 

22 

Units in kilometers 
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Figure 6. Propagation of along-track vertical deflection errors from dense Geosat and ERS 1 profiles into north and east 
components of vertical deflection. At the equator, satellite tracks run mainly N-S so the E-W component of vertical 
deflection is more poorly determined than the N-S component. This covariance information is used in both the blending 
during the iteration (Figure 7) and the filtering following the iteration (Figure 8). 

estimate differed by more than 0.3 m from the prediction then that 
point was edited and the slope profile was recomputed. 

2. Filter all of the along-track data with the same filter (0.5 
gain at 18 km wavelength, Figure 4, dashed curves) to ensure a 
common bandwidth. The cutoff wavelength is based on the 
coherence analysis of Yale et al. [1995] which shows that the 
shortest possible wavelength resolvable is about 20 km. These 
two editing/filtering steps were not executed in the version 6.2 
gravity field which resulted in a very noisy gravity model. 

3. Remove from the profiles a reference geoid model based on 
JGM-3 [Nerem et al., 1994] to degree 70 where coefficients are 
cosine tapered between degrees 50 and 70. This same field is 
restored later on; the reference field is removed so the vertical 

deflection to gravity anomaly conversion can be accurately 
performed with a flat-Earth approximation. 

4. Bin data on an equidimensional Mercator grid with cell 
dimensions of 2 min in longitude and cos(O) x 2 min in latitude. 
The world is divided into 54 overlapping areas that are 1440 cells 



SANDWELL AND SMITH' MARINE GRAVITY 10,045 

I Ascending I I Descending I I Ascending I 
Geosat I I Geøsat I I ERS'I I 
(hit) I I(hit) I I (hit) I 

I Reset• 
I Ascending I I Descending I I Ascending I 

I Descending I 
ERS 1 I 
(hit) I 

I Descending I 
ERS 1 I 

/ 

Figure 7. Flow diagram for constructing north and east grids of 
vertical deflection from ascending and descending along-track 
slope profiles. Iteration provides a communication among the 
diverse data sets [Menke, 1991 ]. 

wide (48 ø) and 1296 cells tall, so there is about 400 km of overlap 
on the perimeters. The areas are large enough so that the longest 
wavelength signal remaining in the residual profiles (-800 km) is 
less than the area dimension (> 2000 km). Data with common 

pass orientation are binned into these grid cells; unconstrained 
cells are left with an empty flag. Binning is done using the 
median value within the bin, and stacked profiles are counted 5 
times so they will dominate the median. 

5. Fill empty cells with reasonable values for the first iteration 
using a weighted average of surrounding data based on an 
(a + r) -3 weight function where a sets the width of the kernel and 
r is distance. 

6. Blend pass-oriented grids using equation (B8) to form grids 
of north and east vertical deflection. Note that each data type is 
assigned a different weight according to expected noise level 
(ERS 1 noise = 1.41 x Geosat noise). Also note that the blending 
operation accounts for the pass orientation as illustrated in Figure 
6. 

7. Decompose the north and east grids into the original pass- 
oriented grids using equations (B 1) and (B2). 

8. Reset bins constrained by along-track slope observations to 
their original values unless they deviate from prediction by more 
than a threshold (15 grad, Geosat; 21 grad, ERS 1) in which case, 
edit the bin. Use biharmonic operator [Briggs, 1974; Smith and 
Wessel, 1990] to interpolate empty cells and go to step 6: 

2 (z],0 + z0,] + z-i,0 + z0,-] ) ZO,O = •- 
1 (Zl,1 -t- Zl,-1 -t- Z-l,1 -t- Z-l,-1 ) 

10 

1 (z0,2 + z2,0 + z-2,0 + z-0,-2 ) 
20 

(1) 

where z0,0 is the interpolated value based on the surrounding 
values zi,j. Steps (6) through (8) are repeated (Figure 7) until the 
values of unconstrained grid cells converge and the interpolated 
grids vary smoothly to zero in continental areas. Exit from the 
iteration after step (6). 

9. The final step is to apply an isotropic, low-pass, convolution 
filter [kei(x/2r/a)] to the north and east grids of vertical 
deflection. The filter width a is proportional to the fourth root of 
the relative error shown in Figure 6 in an attempt to equalize the 
noise level between the north and east slope grids. The 
exponential upward continuation model predicts that halving the 
error increases the resolution by x/2. An additional x/2 resolution 
is gained by averaging twice the amount of data. This is an arm- 
waving argument for using the fourth root of the relative error as 
the filter radius. In practice, the fourth-root model was found to 
work best. The wavelength at which the isotropic filter attenuates 
the signal by 0.5 is shown in Figure 8. For example, at the 
equator the ERS 1 and Geosat tracks provide relatively poor 
control on the east component so the 0.5-gain wavelength is 26 
km while the 0.5 gain for the north component is 20 km. 

After generating grids of north and east vertical deflection, 
various other derivatives of the gravitational potential can be 
computed. In all cases one should restore the appropriate 
derivatives of the spherical harmonic reference model that was 
removed in step 3. For example, the vertical gravity gradient is 
the sum of the x derivative of the east vertical deflection 

component and the y derivative of the north component- 
(equation (A6)) (Figure 2). The gravity anomaly is computed 
using (A10). The accuracy of this flat-Earth approximation is 
related to the cutoff wavelength of the spherical harmonic model 
removed (800 km for complete removal at degree 50). This 
requires Fourier transformation of each vertical deflection grid, 
combination in the wavenumber domain, and inverse Fourier 

transformation of the sum. If the grid pixels are equidimensional, 
then the transformation from vertical deflection to gravity largely 
avoids latitude-dependent length-scale problems [Haxby and 
Hayes, 1991 ]. For example, the operator on the Fourier transform 
of the east component of vertical deflection is kx/Ikl, so the length 
scale largely cancels. Maximum error introduced by this 
approximation will correspond to the change in length scale that 
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Figure 8. Cutoff wavelength (0.5 gain) of isotropic kei filter used 
to equalize the noise level in the north and east vertical deflection 
grids. 
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occurs over a latitude range corresponding to about 400 km of 
distance. At the equator this change is less than 0.2%, while at 
70øN this change is 6%. We expect that the actual errors are 
smaller than this because most of the contribution to the gravity 
anomaly will be nearby. The error due to this "flat Earth" 
approximation is reduced as the spherical harmonic degree of the 
reference model is increased as long as there are no errors in the 
reference model [Haxby and Hayes, 1991]. Also note that to 
safely avoid edge effects the dimensions of the vertical deflection 
grids must be several times larger than the longest wavelength 
remaining in the residual data. The final step in the gravity 
computation is to restore the gravity anomaly corresponding to 
the spherical harmonic model removed in step 3. 

Accuracy and Resolution 

The accuracy and resolution of gravity grids constructed using 
a similar approach were recently established through a 
comparison with accurate shipboard gravity measurements 
[Neumann et al., 1993]. For a small region along the southern 
Mid-Atlantic Ridge where there is a dense shipboard survey and 
large gravity anomalies (140 mGal total variation), the rms 
difference is 7-8 mGal when only Geosat/GM data are used. 
Marks [1996] has recently compared seven well-navigated 
shipboard profiles with this latest version of our grid as well as a 
Geosat-only grid [Marks et al., 1993] to assess the resolution of 
the satellite-derived gravity and improvement gained by adding 
ERS 1 altimeter data. She found agreement (0.5 coherence) to 
wavelengths of 23-30 km for this Geosat/ERS 1 grid and 26-30 
km for the Geosat-only grid; rms differences ranged from 3 to 9 
mGal. This resolution analysis compares well with estimates 
derived from repeat track analysis [Yale et al., 1995] and further 
justifies the use of along-track and two-dimensional filters to cut 
(0.5 gain) wavelengths shorter than 20 km. 

We also compare shipboard gravity profiles with the satellite- 
derived gravity grid and find that individual ship profiles show 

rms differences of 3-6 mGal depending on proximity to a stacked 
altimeter profile. The first two examples are from ship profiles 
that follow the track line of two Geosat/ERM profiles in the 
South Atlantic [Jung and Vogt, 1992]. Along the Conrad 2802 
profile, the ship track deviates from the Geosat track line at-20.5 ø 
latitude to avoid a small island. The mean difference between the 

Geosat-derived gravity and the shipboard gravity is -0.57 mGal, 
and the rms difference is 2.76 mGal when the island/seamount 

data are omitted (Figure 9a). The difference at the crest of the 
seamount is about 50 mGal, which is probably due to lack of 
short-wavelength components in the satellite-derived gravity 
field. The second example (eastern South Atlantic) crosses the 
Walvis ridge and has a similar rms misfit (3.03 mGal) but a large 
mean difference (16.82 mGal) (Figure 9b). This large mean 
difference probably reflects an error in the ship gravity 
measurement at the tie point, or perhaps no tie point correction 
was made. It should be noted that a 3-mGal error corresponds to 
a relative height accuracy of only 15 mm over a distance of 5 km 
(i.e., 1/4 of the resolution wavelength). Considering that typical 
surface wave heights are a meter or more tall, this is a remarkable 
achievement. When repeating profiles are stacked, the vertical 
deflection error decreases as the square root of the number of 
profiles used in the stack [ Yale et al., 1995]. 

To establish the accuracy of the satellite-derived grid in areas 
away from repeat altimeter profiles, we selected data from two 
well-navigated Conrad cruises on the western flank of the 
northern Mid-Atlantic Ridge (Figure 10a). Note this is the same 
ship, gravimeter, and navigation system that was used for the 
South Atlantic comparison (Figure 9); thus differences will reflect 
proximity to a stacked Geosat/ERM profile. All three cruises 
stop in the Azores where we assume the tie point correction was 
established. Three segments were tested, c2912 outbound from 
Spain to the Mid-Atlantic Ridge (Figure 10b, mean 13.01 mGal, 
rms 5.80 mGal), c2912 from Mid-Atlantic Ridge to the Azores 
(Figure 9c, mean 13.92 mGal, rms 5.84 mGal), and c3001 from 
the Azores to the Mid-Atlantic Ridge (Figure 9c, mean 12.43 
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Figure 9a. Comparison between a shipboard gravity profile Conrad 2802 in the western South Atlantic (solid [see Jung 
and Vogt, 1992]) with gravity profile along a track corresponding to a 62-fold stack of Geosat altimeter profiles (dashed). 
The difference was not computed at -21.5øS latitude where the ship track deviates from the satellite track to avoid an island. 
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Figure 9b. Similar comparison for Conrad 2711 along Geosat/ERM suborbital track in the eastern South Atlantic. 

mGal, rms 6.70 mGal). Note that for a short distance the ship 
tracks are nearly coincident and there is a good match among all 
six profiles (Figure 10c). From these comparisons we conclude 
the following: (1) Away from a stacked Geosat/ERM profile the 
accuracy of the satellite-derived gravity field degrades to 4-7 
mGal. Given a typical combined Geosat/ERS 1 track spacing of 
about 2.5 km and a 1/2 wavelength resolution of 10 km there is a 
redundancy of about four tracks over most of the grid. This can 
be compared to a typical redundancy of 40 along the stacked 
Geosat/ERM profile [Yale et al., 1995]. Thus a 3.2 times 
improvement in accuracy near the stacked profile is to be 
expected but only a 2 times improvement is observed; of course 
ocean depth and typical sea state are other major considerations. 
(2) The good match between the satellite-derived gravity and the 
shipboard gravity over the sharp 350-mGal anomaly at a 
longitude of 344 ø (Figure 10b) demonstrates there are no major 
problems with either the dynamic range of the altimeter or the 
data processing. (3) The systematic disagreement in mean level 

of 13 mGal between the cruises c2912 and c3001 suggests that 
there is a 13-mGal error in a common tie point. The implication 
is that one could correct the DC level of all shipboard gravity 
profiles through comparison with the gravity grid [Wessel and 
Watts, 1988; Smith and Sandwell, 1995]. Moreover, instrument 
drift and other more subtle errors such as navigation-induced 
error could be corrected. 

Based on these ground truth analyses, one could expect 
perhaps a factor of 2 improvement in the accuracy of the satellite- 
derived gravity field by collecting at least 4 times more data. The 
Geosat/GM and ERS 1/GM missions reflect 2.5 years of data, so 
a 10-year dedicated mapping mission would be needed. In the 
deep oceans the upward continuation causes the amplitudes of the 
anomalies to decrease exponentially with decreasing wavelength, 
so a factor of 2 improvement in accuracy would only yield a 1.4 
increase in resolution to about 18 km. Such a resolution increase 

would be geophysically significant, especially for hydrocarbon 
exploration where the current satellite-derived gravity fields are 

35øN 

30øN 

40øW 35øW 30øW 25øW 20øW 15øW 10øW 5øW 

Figure 10a. Comparison between satellite-derived gravity and gravity along random ship tracks. (a) Location of Conrad 
2912 Spain to Azores to Mid-Atlantic Ridge and repeating track back to Azores. Location of Conrad 3001 from Azores to 
Mid-Atlantic Ridge along same track line. 
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Figure 10b. Comparison along outbound track of C2912, outbound. 

355 

marginally useful. Perhaps a new technology such as a scanning 
laser altimeter or a multibeam radar altimeter could provide this 
enhanced gravity field in a shorter time period. 

Applications 

Navigation 

The Geosat data were collected by the U.S. Navy to fulfill their 
navigational and mapping requirements. Consider measuring 
accelerations in a moving submarine or aircraft in order to 

determine your position as a function of time. (Of course, your 
starting position and velocity must also be known.) If the 
windows of your vehicle are closed, a true acceleration cannot be 
distinguished from a variation in the pull of gravity. Thus the 
gravity data are needed for correction of inertial navi- 
gation/guidance systems. The military applications are obvious 
and provided the rationale for the $80 million cost of the Geosat 

mission as well as the classification of these data, especially 
during the cold war when nuclear submarines were more active 
than they are today. On the commercial side, Honeywell Inc. is 
using these data to update their inertial navigation systems aboard 
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Figure 10c. Comparison where three ship tracks are nearly coincident (top, c3001' middle, c2912 outbound; bottom, c2912 
inbound). 
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aircraft. In particular, when this correction is not applied, they 
have found large navigational errors along Pacific Ocean flight 
paths which follow the major ocean trenches (K. Vanderwerf, 
Honeywell Inc., Coon Rapids, Minnesota, personal 
communication, 1995). 

Prediction of Seafloor Depth 

We are using these dense satellite altimeter measurements in 
combination with sparse measurements of seafloor depth to 
construct a uniform resolution map of the seafloor topography 
[Smith and Sandwell, 1994]. These maps do not have sufficient 
accuracy and resolution to be used to assess navigational hazards, 
but they are useful for such diverse applications as locating the 
obstructions/constrictions to the major ocean currents and locating 
shallow seamounts where fish and lobster may be abundant. An 
intermediate step in the depth prediction process determines the 
correlation between gravity and depth and a number inversely 
proportional to the seafloor density contrast; these parameters 
may be used as proxies for sediment thickness. 

On a broad scale the topography of the ocean floor reflects the 
cooling and subsidence of the plates as they move away from the 
spreading center. While this process is fairly well understood, 
there are interruptions in this normal subsidence caused by mantle 
plumes and other types of solid-state convection in the mantle of 
the Earth. 

Planning Shipboard Surveys 

The satellite-derived gravity grids reveal all of the major 
structures of the ocean floor having widths greater than 10-15 km. 
This resolution matches the total swath width of the much higher 
resolution (100 m) multibeam mapping system on a ship so the 
gravity maps are the perfect reconnaissance tool for planning the 
more detailed shipboard surveys. Scientists aboard research 
vessels use the gravity grids along with other measurements to 
optimize their survey strategy; in many cases this is done in real 
time. The cost to operate a research vessel is typically $20,000 
per day, so these gravity data have become an essential item. 

Plate Tectonics 

These satellite altimeter data provide an important and 
definitive confirmation of the theory of plate tectonics. Indeed, 
almost everything apparent in the marine gravity field was 
created by the formation and motion of the plates. Spreading 
ridges are characterized by an orthogonal pattern of ridges and 
transform faults. The scar produced in the active transform valley 
is carried by seafloor spreading out onto older seafloor, leaving 
evidence of the past plate motions. The Indian Ocean triple 
junction (27øS latitude, 70øE longitude) is a textbook example of 
seafloor spreading. The satellite-derived gravity field shows the 
intersection of the three spreading ridges as described by plate 
tectonic theory. The theory predicts that the ridges would 
intersect at 120 ø angles if the three ridges were spreading at 
exactly the same rate. In this case, one can measure the 
intersection angles and infer the relative spreading rates of each 
ridge. 

Plates are created at spreading ridges and destroyed 
(subducted) at the deep ocean trenches. All of the major ocean 
trenches are evident in the gravity map as linear troughs. The 
deep ocean basins away from the trenches are characterized by 
fracture zone gravity signatures inherited at the spreading ridge 
axis. This pattern is sometimes overprinted by linear volcanic 

chains which are believed to be formed as the plate moves over a 
stationary mantle plume. The hot plume head melts the mantle 
rocks which erupt on the surface as a hot spot. Because all of 
these major features are evident in the gravity maps, the geologic 
history of the ocean basins can now be established in greater 
detail. 

Undersea Volcanoes 

The global gravity grids reveal all volcanoes on the seafloor 
greater than about 1000 m tall. Approximately 30-50% of these 
volcanoes were not charted previously. One of the more 
important aspects of these new data will be to locate all of these 
volcanoes and identify spatial patterns that may help determine 
how they formed. Many volcanoes appear in chains, perhaps 
associated with mantle plumes, but there are many more that do 
not fit this simple model. Moreover, numerous undersea 
volcanoes are long linear ridges with aspect ratios of 20 or more. 
These features suggest that the plates are not exactly rigid as 
predicted by the simple plate tectonic theory. Using these data, 
we are exploring the internal deformations of the plates, 
especially outboard of trenches where the forces generated by the 
slab-pull force of the subducted plates are greatest. 

Petroleum Exploration 

All of the major petroleum exploration companies use satellite 
altimeter gravity data from Geosat and ERS 1 to locate offshore 
sedimentary basins in remote areas. This information is 
combined with other reconnaissance survey information to 
determine where to collect or purchase multichannel seismic 
survey data. Currently, the regions of most intense exploration 
interest are the continental shelves of Australia and the former 

Soviet Union; recently, companies have expressed interest in the 
Caspian Sea. Developments in offshore drilling technology now 
make it economical to recover oil from continental slope areas in 
water once thought prohibitively deep. 

While we are not directly involved in this activity, we fill data 
requests from many large exploration companies including 
Unocal, Amoco, Exxon, Arco, Mobil, Texaco, Shell, Conoco, and 
British Petroleum, as well as many smaller exploration 
companies. 

Lithospheric Structure 

There are numerous other scientific applications that cannot be 
described in a short report. One of the traditional uses of marine 
gravity measurements is to estimate the thickness of the elastic 
portion of the tectonic plates [Watts, 1979]. When a volcano 
forms on the ocean floor it imparts a large downward load on the 
plate causing it to deform. This deformation appears in the 
gravity field as a donut-shaped gravity low surrounding the 
gravity high associated with the volcano itself. By measuring the 
amplitude and width of the gravity low and relating this to the 
size of the volcano as measured by a ship with an echo sounder, 
one can establish the thickness and strength of the elastic plate. 
The new satellite-derived gravity data enable researchers to 
perform this type of analysis everywhere in the oceans. Thus 
scientists can now probe the outermost part of the Earth using 
these and other methods. 

A gridded file of gravity anomalies (version 7.2) is available 
by anonymous ftp (baltica.ucsd.edu). A large-format, laminated 
poster is available from the Scripps Institution of Oceanography 
Geological Data Center. Also visit our web site 
http://tøpex'ucsd'edu/mar-grav'html' 
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Appendix A' Geoid Height, Vertical Deflection, 
Gravity Gradient, and Gravity Anomaly 

The geoid height N(x) and other measurable quantities such as 
gravity anomaly zig(x) are related to the gravitational potential 
V(x,z) [Heiskanen and Moritz, 1967]. We assume that all of these 
quantities are deviations from a spherical harmonic reference 
Earth model so a flat-Earth approximation can be used for the 
gravity computation (A10). In the following equations the bold x 
denotes the coordinate (x,y); similarly k denotes (kx, ky) where k x 
= 1/&,where •,x is wavelength. To a first approximation, the 
geoid height is related to the gravitational potential by Brun's 
formula, 

N(x) _= 3-V(x,0) (A•) 
go 

where goiS the average acceleration of gravity (9.81 m s-2). The 
gravity anomaly is the vertical derivative of the potential 

aV(x,0) 
zig(x) = - (A2) 

the east component of vertical deflection is the slope of the geoid 
in the x direction 

computation which does not involve spherical harmonics or 
Fourier transforms. Indeed, given two orthogonal satellite 
altimeter profiles, the vertical gravity gradient at their intersection 
point is the sum of the curvatures of each profile times the 
average acceleration of gravity. The simplicity of this calculation 
is particularly desirable for computing the gravity gradient near 
coastlines where the altimeter profiles terminate; the calculation 
of the vertical gravity gradient from (A6) has no edge effect, 
while the Fourier computation of the gravity field can have a 
significant edge effect. 

In contrast to the simple formulation of the gravity gradient, 
computation of the gravity anomaly is much more difficult and 
error prone. Following Haxby et al. [1983], the differential 
equation (A5) is reduced to an algebraic equation by Fourier 
transformation. The forward and inverse Fourier transforms are 

defined as 

7oo 

F(k) = l_ool_•f(x)e-i2•k'x)d2x 
(A7) 

The Fourier transform of (A6) is 

•zig(k,z) 

•z 
= -i2•rgo [kxr/(k)+ ky•(k) 1. (A8) 

r/(x) -- •N _ -1 •V (A3) 
3x go 3x 

From the solution to Laplace's equation in the wavenumber 
domain the upward continuation formula relates the gravity 
anomaly at the surface of the Earth to the gravity anomaly at 
some elevation z. 

and the north component of vertical deflection is the slope of the 
geoid in the y direction. Ag(k,z) = Ag(k,0) exp (-2•{klz) (A9) 

•(x) -- 3N _ -1 3V (A4) _ . 

3y go •y 

These quantities are related to one another through Laplace's 
equation 

+ + 

•x 2 •y 2 3z 2 
= 0. (AS) 

Substitution of (A2), (A3), and (A4) into Laplace's equation (A5) 
yields a relationship between the vertical gravity gradient and the 
sum of the x and y derivatives of the east and north vertical 
deflection 

- go + ß (A6) 

This expression is used to compute vertical gravity gradient 
(Figure 2) from grids of east and north vertical deflection 
[Rummel and Haagmans, 1990]. Note that this is a local 

where Ikl = 1/•x 2 + •y2. Taking the derivative of (A9) with respect 
to z and evaluating the result at z = 0, one arrives at an algebraic 
formula relating the Fourier transform of the gravity anomaly to 
the sum of the Fourier transforms of the two components of 
vertical deflection: 

Ag(k,0) = igo [kxr/(k) + ky•(k) 1. (AlO) 

To compute gravity anomalies from a dense network of 
satellite altimeter profiles of geoid height, one constructs a grid of 
east r/and north • vertical deflection (Appendix B). The grids 
are then Fourier transformed using a discrete approximation to 
(A7). Finally, one performs the multiplications given in (A10) 
and inverse Fourier transforms the result to obtain gravity 
anomaly. At this point one could also add the spherical harmonic 
gravity model back to the gridded gravity values in order to 
recover the long wavelength gravity field. 

Appendix B: Vertical Deflections From 
Along-Track Slopes 

To avoid any adjustment of the data, ascending and descending 
satellite altimeter profiles are first differentiated in the along-track 
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direction resulting in geoid slopes or along-track vertical 
deflections. These along-track vertical deflections are then 
combined to produce east r/and north • components of vertical 
deflection [Sandwell, 1984]. Finally, the east and north vertical 
deflections are used to compute both gravity anomaly and vertical 
gravity gradient (Appendix A). The algorithm used for gridding 
the altimeter profiles is an iteration scheme that relies on rapid 
transformation from ascending/descending geoid slopes to 
north/east vertical deflection and vice versa. Consider for the 

moment the intersection point of an ascending and a descending 
satellite altimeter profile. The derivative of the geoid height N 
with respect to time t along the ascending profile is 

nearly perpendicular so that the east and north components of 
geoid slope have the same signal-to-noise ratio. 

When two or more satellites with different orbital inclinations 

are available, the situation is slightly more complex but also more 
stable. Consider the intersection of four passes as shown in 
below. 

2 4 

_ ß aN ;a (B 1) 3•a= aNa aN Oa + • 
at 30 3q) 

and along the descending profile is 

• aN ;d (B2) 

where is 0 geodetic latitude and • is longitude. The functions • 
and ½ are the latitudinal and longitudinal components of the 
satellite ground track velocity (Appendix C). It is assumed that 
the satellite altimeter has a nearly circular orbit so that its velocity 
depends mainly on latitude; at the crossover point the following 
relationships are accurate to better than 0.1%. 

Oa =-Od q)a = q)d. (B3) 

(Analytic expressions for satellite velocities are given in 
Appendix C using orbit parameters in Table C1.) The geoid 
gradient is obtained by solving (B 1) and (B2) using (B3). 

3N I (/•a + 
ß 

(B4) 

_ 1 (/•a-/•d). (BS) 
ao 

1 3 

The along-track derivative of each pass can be computed from the 
geoid gradient at the crossover point 

P•I . 3N 

= ' 

P•4 

(B6) 

or in matrix notation 

lq = © VN. (B7) 

Since this is an overdetermined system, the four along-track slope 
measurements cannot be matched exactly unless the 
measurements are error free. In addition, an a priori estimate of 
the error in the along-track slope ty i measurements can be used to 
weight each equation in (B6) (i.eo, divide each of the four 
equations by tYi ). The least squares solution to (B7) is 

)-lot vm = ((•t (• 1• (U8) 

It is evident from this formulation that there are latitudes where 

either the east or north component of geoid slope may be poorly 
determined. For example, at +72 ø latitude the Seasat and Geosat 
altimeters reach their turning points where the latitudinal velocity 
• goes to zero and thus (B5) becomes singular. In the absence of 
noise this is not a problem because the ascending and descending 
profiles are nearly parallel so that their difference goes to zero at 
the same rate that the latitudinal velocity goes to zero. Of course, 
in practice, altimeter profiles contain noise, so that the north 
component of geoid slope will have a signal-to-noise ratio that 
decreases near +72 ø latitude. Similarly, for an altimeter in a near 
polar orbit the ascending and descending profiles are nearly 
antiparallel at the low latitudes; the east component of geoid 
slope is poorly determined and the north component is well 
determined. The optimal situation occurs when the tracks are 

where t and -1 are the transpose and inverse operations, 
respectively. In this case a 2 by 4 system must be solved at each 
crossover point, although the method is easily extended to three 
or more satellites. Later we will assume that every grid cell 
corresponds to a crossover point of all the satellites considered, so 
this small system must be solved many times. 

In addition to the estimates of geoid gradient, the covariances 
of these estimates are also obtained: 

(B9) 

We use the covariance estimates to low-pass filter the north 
component of geoid slope differently from the east component 
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depending on latitude. An example of covariance estimates for a 
combination of Geosat and ERS 1 is shown in Figure 6 where the 
standard deviation of ERS 1 was set to 1.4 times the standard 

deviation of Geosat. Since Geosat and ERS 1 are high-inclination 
satellites, the estimated uncertainty of the east component is about 
3 times greater than the estimated uncertainty of the north 
component at the equator. At higher latitudes of 600-700 where 
the tracks are nearly perpendicular, the north and east components 
are equally well determined. At 72øN where the Geosat tracks 
run in a westerly direction, the uncertainty of the east component 
is low and the higher-inclination ERS 1 tracks prevent the 
estimate of the north component from becoming singular at 720 . 

Finally, the east r/ and north • components of vertical 
deflection are related to the two geoid slopes [Heiskanen and 
Moritz, 1967] by 

r/ - 1 aN (B10) 
a cos 0 a•p 

• = 1 aN (Bll) 
a 30 

where a is the mean radius of the Earth. 

Appendix C: Approximate Satellite Position 
and Velocity 

The exact satellite ground track velocity could be calculated 
directly from the ground track profiles supplied with the satellite 
altimeter data records. However, later on we will need to 
evaluate (B1), (B2), and (B6) at grid cells that were not 
necessarily intersected by a satellite profile. Thus it is desirable 
to have accurate formulae for computing 0 and • versus latitude. 
In addition, the accumulation of the along-track repeat profiles 
into the stack files require an approximate trajectory for the 
satellite. Thus we derive expressions for both the approximate 
position and velocity of a satellite in a circular orbit about an 
ellipsoidal Earth. The important parameters are the orbit 
frequency co s , the Earth rotation rate ro e , the precession rate of the 
orbit plane about the Earth's spin axis con, the inclination of the 
satellite orbit/, the flattening of the Earth f, the starting longitude 
of the satellite C)o, the geocentric latitude 0 c, and the geodetic 
latitude 0. Numerical values of the constant parameters are given 
in Table C1. 

To attain the desired level of approximation, it is necessary to 
account for the flattening of the Earth when computing latitude 

and latitudinal velocity. Assuming the Earth is an oblate ellipse 
with flattening f, the conversion from geocentric 0 c to geodetic 
latitude 0 is 

tan 0 = (l-f)-2 tan Oc. (C1) 

At the equator and at the poles, the two latitudes are equal, but at 
intermediate latitudes (e.g., 450 ) they differ by up to 0.20 . The 
derivative of (C1) with respect to time provides the correction to 
the latitudinal velocity when converting from the geocentric 
system to the geodetic system. 

0 = (1 _f)-2 cos20 
Oc cøs20c 

(C2) 

Equations for the relative position of the satellite versus time 
were derived following Kaula [1966]. The basic problem is to 
map the position of a satellite in a circular orbit about the Earth 
into an Earth-fixed coordinate system. Let t = 0 be the time when 
the satellite orbit crosses the Earth's equatorial plane on an 
ascending pass at a longitude of •Po. To develop formulas, one 
first represents the position of the satellite in a Cartesian 
coordinate system q where the qx axis is the line connecting the 
center of the Earth and the ascending equator crossing. The qz 
axis is perpendicular to the orbit plane and the qy axis is 
orthogonal to the qx and qz axes. In this frame the qx, qy and qz 
positions are cos(cost ), sin(cost), and 0, respectively. Next the 
satellite frame is rotated about the qx axis by the inclination of the 
orbit plane relative to the Earth's equatorial plane I. A third 
rotation about the Earth's spin axis maps the satellite plane into an 
Earth-fixed system. This final rotation involves the rotation rate 

of the Earth relative to the precessing orbit plane roe'= ro e - con. 
After performing the three rotations and transforming the results 
from Cartesian coordinates into spherical coordinates, one obtains 
expressions for the latitude and longitude versus time. The 
geocentric latitude is 

Oc(t) = sift 1 [sin cost sin I ]. (C3) 

This geocentric latitude is converted to geodetic latitude using 
equation (C1). In addition, (C3) can be inverted to yield the time 
since the equator crossing 

t(Oc)= co•l sin-1 [sin0c ]. L sin I 
(C4) 

Table C1. Orbit Geometric Parameters 
r 

Description GEOS 3 

ms orbit frequency, s -1 1.0420 x 10 -3 
On precess frequency, s -1 -4.143 x 10 -7 
I inclination 114.980 ø 

roe Earth rotation frequency, s -1 7.29212 x 10 -5 
f flattening 1/298.25 

a earth radius, rn 6371000 

go acceleration of gravity, rn s -2 9.81 

Seasat Geosat TOPEX 

1.0407 x 10-3 
-6.743 x 10 -5 
108.0584 ø 

1.0407 x 10 -3 

(ro e - co s ) 17/244 
108.0584 ø 

9.3143 x 10 -4 

(ro e - co s ) 10/127 
66.010 ø 

ERS 1 

1.0379 x 10 -3 

(roe- Cøs) 35/501 
98.5557 ø 
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The cosine and sine of the longitude (relative to •Po) at some later 
time are given by 

and 

cosq(t) = [ cos co•t cos COst + sin COe't sin COst cos I cos Oc(t) 
(C5) 

sin•t) = 
-sin CO•t cos COst + cos COe't sin COst cos I 

cos Oc(t) 
ß (C6) 

By combining these two expressions, the longitude at a later time 
is 

q(t) =tan-l[-sin co•t cos cost +cos coe't sin cost cosl I +•po(C7 ) cos CO•t cos COst +sinCOe't sin COst cos I 

Given these equations for position versus time, one can derive 
expressions for the latitudinal and longitudinal components of the 
satellite velocity versus latitude. The latitudinal velocity is 
obtained by differentiating (C3) with respect to time and using 
(C4) to relate velocity to latitude instead of time. The result is 

Oc(Oc)=COs 1 cos2i 1/2. (C8) 
cos20c 

Of course, the sign of the velocity will depend on whether the 
satellite profile is ascending (+) or descending (-). To convert 
from geocentric velocity to geodetic velocity, (C2) is used. The 
longitudinal velocity of the satellite is most easily determined by 
using the fact that the total angular velocity of the satellite (in the 
satellite frame) is constant (COs). Then the longitudinal velocity of 
the satellite relative to the Earth is 

COs cos I o•. (C9) 
cos20c 

To establish the accuracy of these approximate satellite 
velocities, (C8) and (C9) were compared with the trajectory of a 
Geosat Exact Repeat Mission profile [Cheney et al., 1991]. The 
model velocities lie within 1 grad/s of the actual velocites 
[Sandwell, 1992]. The greatest error in total velocity occurs at 
72 ø latitude where the difference is 7 rn/s or 0.1%. Other 

numerical tests show that the position estimates from (C3) and 
(C7) are accurate to better than 1 km as long as the predicted 
position is less that 1/4 an orbit from the known equator crossing 
position. 
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