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[1] Exploring the earthquake cycle for large, complex tectonic boundaries that deform
over thousands of years requires the development of sophisticated and efficient models. In
this paper we introduce a semianalytic three-dimensional (3-D) linear viscoelastic
Maxwell model that is developed in the Fourier domain to exploit the computational
advantages of the convolution theorem. A new aspect of this model is an analytic solution
for the surface loading of an elastic plate overlying a viscoelastic half-space. When fully
implemented, the model simulates (1) interseismic stress accumulation on the upper
locked portion of faults, (2) repeated earthquakes on prescribed fault segments, and (3) the
viscoelastic response of the asthenosphere beneath the plate following episodic ruptures.
We verify both the analytic solution and computer code through a variety of 2-D and 3-D
tests and examples. On the basis of the methodology presented here, it is now possible
to explore thousands of years of the earthquake cycle along geometrically complex 3-D
fault systems. INDEX TERMS: 1206 Geodesy and Gravity: Crustal movements—interplate (8155); 1242

Geodesy and Gravity: Seismic deformations (7205); 3210 Mathematical Geophysics: Modeling; 8164
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1. Introduction

[2] Long-term tectonic loading, instantaneous fault rup-
ture, and transient postseismic rebound are key components
of the earthquake cycle that expose important spatial and
temporal characteristics of crustal deformation. Understand-
ing these dynamics for complicated continental transform
boundaries requires three-dimensional (3-D), time-
dependent models that are able to simulate deformation
over a wide range of spatial and temporal scales. Such ideal
models must capture both the 3-D geometry of real fault
systems and the viscoelastic response of repeated earth-
quakes. Even by limiting the problem to the quasi-static
case (i.e., no seismic waves), such models must include
timescales ranging from the rupture duration (�100 s) to the
vertical rebound timescale (>1000 years) and length scales
ranging from the fault thickness (�500 m) to the length of
the transform boundary (�1000 km). Purely numerical
algorithms, implemented on even the most powerful com-
puters, cannot adequately resolve these wide-range length-
and timescales. Therefore improved analytic methods are
needed to reduce the scope of the numerical problem.
[3] Here we develop a semianalytic solution for the

response of an elastic plate overlying a viscoelastic half-
space due to time-dependent point body forces (Figure 1).
Our solution extends the analytical approach of Rundle and
Jackson [1977], while enhancing computational efficiency

and maintaining qualitative agreement with many purely
numerical studies. The 3-D problem is solved analytically in
both the vertical dimension (z) and the time dimension (t),
while the solution in the two horizontal dimensions (x,y) is
developed in the Fourier transform domain to exploit the
efficiency offered by the convolution theorem. Using this
numerical approach, the horizontal fault pattern and slip
distribution can be arbitrarily complex without increasing
the computational burden. The full 3-D time-dependent
model presented here can be comfortably implemented on
a desktop computer using a grid that spans spatial scales
ranging from 1 km to 2048 km, although larger grids are
possible.
[4] In this paper we develop the semianalytic solutions

to the 3-D viscoelastic problem for a vertical fault
model and compare numerical results against known ana-
lytic solutions in order to assess the accuracy and efficiency
of the technique. In a supplemental paper (B. Smith and
D. Sandwell, manuscript in preparation, 2004) we will
apply this method to simulate the earthquake cycle along
the San Andreas Fault system for the past several thousand
years. These models are necessary as seismic and geodetic
measurements have recorded only a small portion of the
earthquake cycle on major fault segments, and therefore
the viscoelastic response of the asthenosphere, which will
introduce long-term fault-to-fault coupling, remains poorly
constrained. Furthermore, postseismic deformation mechan-
ics pose many unanswered questions relating to the rheo-
logical parameters and time-dependent relaxation processes
of the Earth.
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[5] Several postseismic models have been developed to
match geodetically measured surface velocities. These mod-
els include poroelastic flow of fluids in the upper crust [e.g.,
Peltzer et al., 1996, 1998; Fialko, 2004a], deep afterslip
[e.g., Shen et al., 1994; Heki et al., 1997; Savage and Svarc,
1997; Wdowinski et al., 1997], and fault zone collapse [e.g.,
Massonnet et al., 1996]. While many efforts are being made
to examine these models as possible explanations of post-
seismic behavior, in this paper we explore a model based on
viscoelastic coupling between an upper elastic plate and a
lower linear viscoelastic half-space [e.g., Savage and
Prescott, 1978; Thatcher, 1983, 1984; Ivins, 1996; Deng
et al., 1998; Pollitz et al., 2001; Hearn et al., 2002]. We also
include the restoring force of gravity in our viscoelastic
model to ensure sensible vertical results. We are particularly
concerned with the time-dependent vertical response of the
Earth to horizontal displacements given that recent studies
have shown that vertical geodetic measurements are sensi-
tive to the thickness of the elastic later and the viscosity of
the mantle [Deng et al., 1998; Pollitz et al., 2000, 2001].
[6] In addition to understanding postseismic deformation,

many studies have focused on the 3-D evolution of the
stress field. Coulomb stress change from large earthquakes
has been used to explain the triggering of subsequent
earthquakes and aftershocks [King et al., 1994; Stein et
al., 1994; Kilb et al., 2000; King and Cocco, 2001; Zeng,
2001; Kilb et al., 2002; Toda et al., 2002; Anderson et al.,

2003; Fialko, 2004b]. Many stress-transfer calculations are
based on purely elastic models because analytic solutions
[Okada, 1985, 1992] can be computed efficiently in three
dimensions for realistic fault geometries and rupture histo-
ries. However, layered viscoelastic models are needed to
investigate time-dependent deformation and the triggering
of earthquakes over timescales comparable to the recurrence
interval. Consequently, several realistic viscoelastic models
have been developed and applied to stress relaxation prob-
lems following large earthquakes [e.g., Freed and Lin,
1998; Deng et al., 1999; Kenner and Segall, 1999; Freed
and Lin, 2001; Zeng, 2001; E. H. Hearn et al., manuscript in
preparation, 2004]. However, because of computer speed
and memory limitations, most of these numerical models are
limited to a single recurrence interval and relatively simple
fault geometries. Hence current models do not adequately
address 3-D deformation of multiple interacting fault
strands spanning multiple earthquake cycles. A complete
model, incorporating both these aspects, could improve
seismic hazard analyses and also provide greater insight
into the physics of the earthquake cycle.
[7] While the approach we develop here is capable of

addressing elaborate faulting and earthquake scenarios, it
also incorporates two important improvements to the ana-
lytic model developed by Rundle and Jackson [1977]. First,
we satisfy the zero-traction surface boundary condition by
developing a new analytic solution to the vertical loading

Figure 1. 3-D sketch of Fourier fault model simulating an elastic layer overlying a linear Maxwell
viscoelastic half-space. Fault elements are embedded in a plate of thickness H (or h) and extend from a
lower depth of d1 to an upper depth of d2. A displacement discontinuity across each fault element is
simulated using a finite width force couple, F, embedded in a fine grid (see Appendix E). Model
parameters include plate velocity (Vo), shear modulus (m1, m2), Young’s modulus (E1, E2), density (r), and
viscosity (h). Note that the elastic moduli for the viscoelastic half-space (m2, E2) are time- and viscosity-
dependent and depend upon values given to their elastic plate counterparts, m1 and E1 (Appendix D).

B12401 SMITH AND SANDWELL: MODEL FOR ANALYSES OF EARTHQUAKE CYCLE

2 of 25

B12401



problem for an elastic plate overlying a viscoelastic half-
space, where the gravitational restoring force is included
(Appendix A). The development of this analytic solution
follows the approach of Burmister [1943] and Steketee
[1958] but uses computer algebra to analytically invert the
6 � 6 matrix of boundary conditions. Second, rather than
develop the Green’s function for the spatial response of a
point body force, we solve the differential equations and
boundary conditions in the 2-D Fourier transform domain.
This substantially reduces the computational burden asso-
ciated with an arbitrarily complex distribution of force
couples necessary for fault modeling.
[8] The remaining sections of this paper focus on the

derivation of the 3-D Fourier solution, comparisons with
analytic tests, and a 3-D demonstration of the earthquake
cycle for a simplified fault system. In section 2 we provide a
complete mathematical development of the model. This
includes Appendices A–E, where many important details
are provided. The computer code required to implement
these equations is available at http://topex.ucsd.edu/body_
force. Section 3 provides a number of tests of the Fourier
solution and related code against a series of analytic
solutions to end-member problems (e.g., 2-D dislocations
and cylindrically symmetric vertical loads). Section 4 pro-
vides several numerical examples of the time evolution of
the deformation and stress fields over an earthquake cycle
using simple fault geometry. These examples focus on the
vertical velocity that is driven by purely horizontal dislo-
cations as well as the temporal evolution of stress shadows
following major earthquakes. Simple examples such as
these provide important aspects of the earthquake cycle that
will ultimately lead to a greater understanding of complex
faulting scenarios spanning thousands of years.

2. Fourier Three-Dimensional (3-D) Viscoelastic
Model for Fault Deformation

2.1. New Developments to the Analytic Approach

[9] At present, there are a variety of analytical and numer-
ical 2-D and 3-D models used to investigate the behavior of
elastic and viscoelastic deformation. Commonly used 2-D
models include analytic solutions of Weertman [1964],
Rybicki [1971], Nur and Mavko [1974], and Savage and
Prescott [1978], and analytic 3-D solutions include those of
Rundle and Jackson [1977] and Okada [1985, 1992]. More
advanced 3-D numerical methods such as finite element
models [e.g., Lysmer and Drake, 1972; Yang and Toksoz,
1981;Melosh, 1983;Cohen, 1984;Williams and Richardson,
1991], boundary element models [e.g., Crouch and
Starfield, 1983; Zang and Chopra, 1991; Thomas, 1993],
finite difference models [e.g., Olsen and Schuster, 1992;
Frankel, 1993], matrix propagator methods [e.g., Haskell,
1953; Singh, 1970; Sato, 1971; Ward, 1984, 1985; Wang et
al., 2003], etc., have been explored more recently in order
to efficiently treat large-scale deformation problems with
complex boundary conditions. Numerical methods such as
these provide improved computational efficiency but unfor-
tunately lack the simplicity and speed of analytic solutions.
[10] Rundle and Jackson [1977] developed a 3-D analytic

viscoelastic solution (i.e., Green’s function) based on the
dislocation solutions of Steketee [1958], Rybicki [1971], and
Nur and Mavko [1974]. While the Green’s function is

computationally efficient for calculating displacement or
stress at a few points due to slip on a small number of faults,
it is less efficient for computing deformation on large grids,
especially when the fault system has hundreds or thousands
of segments. Because the force balance equations are linear,
the convolution theorem can be used to speed the computa-
tion as follows: take the Fourier transform of the body force
couples representing fault elements, multiply by the Fourier
transform of the Green’s function of the model, and, finally,
take the inverse Fourier transform of the product to obtain the
displacement or stress field. Using this approach, the hori-
zontal complexity of the model fault system has no effect on
the speed of the computation. For example, computing vector
displacement and stress on a 2048 � 2048 grid for a fault
system consisting of 400 segments and a single locking depth
requires <40 s of CPU time on a desktop computer. Because
multiple time steps are required to fully capture viscoelastic
behavior, a very efficient algorithm is needed for computing
3-D viscoelastic models with realistic 1000 year recurrence
interval earthquake scenarios in a reasonable amount of
computer time (i.e., days).
[11] In addition to enhancing the computational speed of

the 3-D viscoelastic problem, we have also constructed a new
solution for balancing normal stress in a layered half-space
(Appendix A). The method of images is commonly used to
solve continuum mechanics problems having a free surface
boundary condition. An image source is used to cancel the
surface shear traction, although in three dimensions the
vertical traction remains nonzero. Steketee [1958] showed
how to balance this vertical traction by adding a complemen-
tary solution corresponding to a vertical load on an elastic
half-space: the Boussinesq problem [Boussinesq, 1885].
Rundle and Jackson [1977] used this elastic half-space
solution to approximately balance the normal traction in the
layered model and noted small depth-dependent errors asso-
ciated with this approximation; they were chiefly concerned
with horizontal deformation in their model. Burmister [1943]
solved the surface loading problem for a plate overlying an
elastic half-space but assumed an incompressible solid
(Poisson’s ratio u = 0.5). While our approach is similar to
that of Burmister [1943], we solve the more general layered
Boussinesq problem without any restrictions on Poisson’s
ratio and have also included the restoring force of gravity.
[12] The full solution for the layered Boussinesq-like

problem is provided in Appendix A. The important aspects
of the derivation are related to the boundary conditions:
(1) a vertical point load is applied at the free surface; (2) the
two components of stress (normal and shear) as well as the
two components of displacement (vertical and horizontal)
must be continuous across the boundary between the layer
and the half-space; and (3) at infinite depth, stresses and
displacements within the half-space must go to zero. In the
Fourier transform domain the differential equations and
boundary conditions simplify to a 6 � 6 system of algebraic
equations (A12). This system was initially inverted using
computer algebra, resulting in many pages of computer-
generated equations. These pages were simplified by hand
to the solutions provided in equations (A14)–(A24). The
simplified solutions were checked again using computer
algebra. Finally, the computer code was tested against
existing analytic solutions (section 3). The new Boussinesq
solutions, combined with the mathematical solutions de-
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scribing displacements and stresses in a layered viscoelastic
medium (section 2.2), form the full 3-D Fourier solution set.

2.2. 3-D Fourier Model Formulation

[13] The Fourier model consists of a Fourier-transformed
grid of body force couples (representing multiple fault
elements) embedded in an elastic plate overlying a visco-
elastic half-space (Figure 1). We begin by solving for the
displacement vector u(x,y,z) due to a point vector body force
at depth. The following text provides a brief outline of our
mathematical formulation, while the full derivation and
source code are available at http://topex.ucsd.edu/body_
force.
[14] 1. Develop differential equations relating a 3-D

vector body force to a 3-D vector displacement:

mr2uþ lþ mð Þ @2u

@x2
þ @2v

@ydx
þ @2w

@z@x

� �
¼ �rx;

mr2vþ lþ mð Þ @2u

@x@y
þ @2v

@y2
þ @2w

@z@y

� �
¼ �ry;

mr2wþ lþ mð Þ @2u

@xdz
þ @2v

@ydz
þ @2w

@z2

� �
¼ �rz;

ð1Þ

where u, v, and w are vector displacements, l and m are
Lame parameters, and rx, ry, and rz are vector body force
components. A vector body force is applied at x = y = 0, z =
a. Note that z is positive upward, and a has a value less than
zero. To partially satisfy the boundary condition of zero
shear traction at the surface, an image source [Weertman,
1964] is applied at a mirror location at x = y = 0, z = �a:

r x; y; zð Þ ¼ Fd xð Þd yð Þd z� að Þ þ Fd xð Þd yð Þd zþ að Þ: ð2Þ

[15] 2. Take the 3-D Fourier transform of equations (1)
and (2) to reduce the partial differential equations to a set of
linear algebraic equations.
[16] 3. Invert the linear system of equations to obtain

the 3-D displacement vector solution for U(k), V(k), and
W(k):

U kð Þ
V kð Þ
W kð Þ

2
64

3
75 ¼ lþ mð Þ

kj j4m lþ 2mð Þ




k2y þ k2z

	 

þ m kj j2

lþ mð Þ �kykx �kzkx

�kxky k2x þ k2z
� �

þ m kj j2

lþ mð Þ �kzky

�kxkz �kykz k2x þ k2y

	 

þ m kj j2

lþ mð Þ

2
66666666664

3
77777777775



e�i2pkza þ ei2pkza
� �

4p2

Fx

Fy

Fz

2
64

3
75; ð3Þ

where l and m are elastic constants, k = (kx,ky,kz), jkj2 =
k 
 k, and where exponents raised to the power of
±i2pkza correspond to the image and source components,
respectively.

[17] 4. Perform the inverse Fourier transform in the z
direction (depth) by repeated application of the Cauchy
residue theorem. In the following equation, U(k,z) repre-
sents the deformation matrix, where jkj = (kx

2 + ky
2)1/2 and

subscripts s and i refer to source and image components:

U kð Þ
V kð Þ
W kð Þ

2
64

3
75¼ U k; zð Þ ¼ Us k; z� að Þ

Fx

Fy

Fz

2
64

3
75þ Ui k;�z� að Þ

Fx

Fy

Fz

2
64

3
75:
ð4Þ

[18] 5. Introduce a layer of thickness H into the system
through an infinite summation of image sources [Weertman,
1964; Rybicki, 1971], reflected both above and below the
surface z = 0 (Appendix B):

U kð Þ
V kð Þ
W kð Þ

2
64

3
75 ¼ Us k; z� að Þ

Fx

Fy

Fz

2
64

3
75þ Ui k;�z� að Þ

Fx

Fy

Fz

2
64

3
75

þ
X1
m¼1

m1 � m2
m1 þ m2

� �m

Ui k; z� a� 2mHð Þ
þ Ui k;�z� aþ 2mHð Þ
þ Ui k; z� aþ 2mHð Þ
þ Ui k;�z� a� 2mHð Þ

2
6664

3
7775

Fx

Fy

Fz

2
64

3
75: ð5Þ

In equation (5), shear moduli m1 and m2 refer to the elastic
constants of the layer and underlying half-space, respec-
tively. The development of this solution requires an infinite
number of image sources, m, to satisfy the stress-free
surface and layer boundary conditions, and therefore
convergence of the series in the case m2 = 0 is problematic.
This special case, which corresponds to the end-member
case of an elastic plate overlying a fluid half-space, is solved
in Appendix C.
[19] 6. Integrate the point source Green’s function over

depths [d1,d2] to simulate a fault plane (equation (6)). For the
general case of a dipping fault, this integration can be done
numerically. However, if the fault is vertical, the integration
can be performed analytically. The displacement or stress
can be evaluated at any depth z > d1. In the following
equation, U0(k,z) represents the depth-integrated solution:

Zd2
d1

U k; zð Þdz ¼ U0 k; zð Þ ¼ U0
s k; z� d2ð Þ � U0

s k; z� d1ð Þ
� � Fx

Fy

Fz

2
64

3
75

þ U0
i k;�z� d2ð Þ � U0

i k;�z� d1ð Þ
� � Fx

Fy

Fz

2
64

3
75þ

X1
m¼1

m1 � m2
m1 þ m2

� �m




U0
i k; z� d2 � 2mHð Þ � U0

i k; z� d1 � 2mHð Þ
� �

� U0
i k;�z� d2 þ 2mHð Þ � U0

i k;�z� d1 þ 2mHð Þ
� �
þ U0

i k; z� d2 þ 2mHð Þ � U0
i k; z� d1 þ 2mHð Þ

� �
� U0

i k;�z� d2 � 2mHð Þ � U0
i k;�z� d1 � 2mHð Þ

� �

2
6664

3
7775



Fx

Fy

Fz

2
64

3
75: ð6Þ
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[20] The individual elements of the source and image
matrices are

U0
s k;Zð Þ ¼

Ux Uy Uz

Uy Vy Vz

Uz Vz Wz

2
66664

3
77775 U0

i k;Zð Þ ¼

Ux Uy Uz

Uy Vy Vz

�Uz �Vz �Wz

2
66664

3
77775;

ð7Þ

where Z represents all z-dependent terms, including all
combinations of z, dn, and 2mH. The six independent
functions of the deformation matrix are

Ux

Uy

Uz

Vy

Vz

Wz

2
66666666666666664

3
77777777777777775

¼ C

b2

Dþ
k2y

kj j2
� k2x

kj j2
� k2x

kj j2

�2
kxky

kj j2
� kxky

kj j2

�i
kx

kj j �i
kx

kj j

Dþ k2x

kj j2
�

k2y

kj j2
�

k2y

kj j2

�i
ky

kj j �i
ky

kj j
Dþ 1 1

2
666666666666666666664

3
777777777777777777775

e�bZ

bZe�bZ

2
4

3
5; ð8Þ

where

D ¼ l1 þ 3m1
l1 þ m1

; kj j ¼ k2x þ k2y

	 
1=2
; b ¼ 2p kj j:

The solutions of equation (8) are identical to those of Smith
and Sandwell [2003] but have been simplified for further
manipulation of the exponential terms.
[21] 7. Analytically solve for Maxwell viscoelastic time

dependence using the Correspondence Principle and assum-
ing a Maxwell time defined by tm = 2h/m (Appendix D).
Following an approach similar to that of Savage and
Prescott [1978], we map time and viscosity into an
implied half-space shear modulus, m2. We require the bulk
modulus to remain constant and thus also solve for an
implied E2.
[22] 8. Calculate the nonzero normal traction at the

surface, and cancel this traction by applying an equal but
opposite vertical load on an elastic layer overlying a
viscoelastic half-space (Appendix A).
[23] The numerical aspects of this approach involve

generating grids of vector force couples (i.e., Fx, Fy, and
Fz) that simulate complex fault geometry (Appendix E),
taking the 2-D horizontal Fourier transform of the grids,
multiplying by the appropriate transfer functions and time-
dependent relaxation coefficient, and, finally, inverse Four-
ier transforming to obtain the desired results. Arbitrarily
complex curved and discontinuous faults can easily be
converted to a grid of force vectors (Figure 1). The model
parameters are plate thickness (H), locking depths (d1, d2),
shear modulus (m), Young’s modulus (E), density (r),
gravitational acceleration (g), and half-space viscosity (h).
As previously mentioned, the solution satisfies the zero-
traction surface boundary condition and maintains stress

and displacement continuity across the base of the plate
(Appendix A). The x boundary condition of constant far-
field velocity difference across the plate boundary is simu-
lated using a cosine transform in the x direction. The y
boundary condition of uniform velocity in the far field is
simulated by arranging the fault trace to be cyclic in the y
dimension. This fault model will be used to efficiently
explore the 3-D viscoelastic response of the Earth through-
out the earthquake cycle.

3. Analytic and Numeric Tests of the Layered
Viscoelastic Solution

3.1. 2-D Analytic Comparisons

[24] Although the solutions described in section 2.2 have
been checked using computer algebra, it is necessary to
verify the accuracy of our computer code through compar-
isons with known analytic solutions. These include 2-D
analytic examples of dislocations in (1) a homogeneous
elastic half-space, (2) a layered elastic half-space, and (3) a
layered viscoelastic half-space. For these tests, fault slip is
simulated by embedding a straight, vertical fault in the y
dimension of a 1 km spaced grid of nominal dimension
2048 � 2048, performing a 2-D horizontal Fourier trans-
form of the grid, multiplying by appropriate transfer func-
tions (equations (6)–(8)), and inverse transforming to arrive
at the final solution. In the subsequent models the following
parameters are used, unless otherwise specified: Vo =
40 mm yr�1, H = 50 km, d2 = �25 km, m1 = 28 GPa,
E1 = 70 GPa, and h = 1019 Pa s.
3.1.1. Homogeneous Elastic Half-Space
[25] First, we test the surface displacement due to an

infinitely long 2-D fault in a homogeneous elastic medium
that is locked between depths of d1 and d2 (Figure 2,
solid line). The analytic solution [Weertman, 1964] is
given by

V xð Þ ¼ Vo

p
tan�1 d2

x

� �
� tan�1 d1

x

� �� �
; ð9Þ

where Vo is fault slip rate, d1 is lower locking depth, d2 is
upper locking depth, and x is the perpendicular distance
across the fault plane. When d1 is set to minus infinity, this
solution is used to describe interseismic deformation (deep
slip). Comparing this solution with our Fourier model
(uniform elastic properties E2 = E1, m2 = m1) results in an
error of 0.2% (gray inset, solid line). Because the fault
length is assumed to be infinite, the x length of the grid must
be extended (e.g., 4096 elements) to achieve even higher
accuracy.
[26] In addition to this 2-D example, we have also

compared the 3-D results of this model to the 3-D solutions
of Okada [1985, 1992] for a finite-length dislocation in a
homogeneous elastic half-space. Although not presented
here, the two models are in excellent agreement for both
horizontal and vertical displacements (http://topex.ucsd.edu/
body_force).
3.1.2. Layered Elastic Half-Space
[27] As a second test, we compare the Fourier model to

the 2-D analytic solution for a dislocation in an elastic layer
of shear modulus m1 overlying a half-space of shear mod-
ulus m2 (Figure 2, dashed line). The analytic solution for the
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surface displacement due to a fault that is locked between
depths of d1 and d2 [Rybicki, 1971] is given by

V ¼ Vo

p

(
tan�1 d2

x

� �
� tan�1 d1

x

� �
þ
X1
m¼1

m1 � m2
m1 þ m2

� �m



tan�1 d2 � 2mH

x

� �
� tan�1 d1 � 2mH

x

� �

þ tan�1 d2 þ 2mH

x

� �
� tan�1 d1 þ 2mH

x

� �
2
664

3
775
)
;

ð10Þ

where H is the layer thickness and m refers to the number of
image sources. Figure 2 (dashed line) shows the end-
member case of deep slip (d1 = �H) of a fluid half-space
(m2 = 0). The models agree to 0.1% (gray inset, dashed line),
although larger far-field deviations are possible due to the
slow convergence of the Rybicki [1971] solution. We must
sum more than 105 terms of equation (10) to achieve full
far-field convergence; the Fourier solution does not suffer
from this convergence problem because the infinite sum is
performed analytically (Appendix C).

3.1.3. Layered Viscoelastic Half-Space
[28] The final 2-D comparison presented here tests our

implementation of the Correspondence Principle for map-
ping the viscoelastic properties of the model into an
equivalent elastic model. In 3-D, one must be careful to
maintain a time-invariant bulk modulus. The analytic solu-
tion for this model is described by Nur and Mavko [1974],
although their paper does not provide the equations for
mapping the Maxwell-normalized time into the rigidity of
each of the image layers. This mapping is provided by
Savage and Prescott [1978], although our approach differs
in that we do not explicitly include a constant earthquake
recurrence interval (Appendix D). We prefer to allow a
variable recurrence interval to better simulate known earth-
quake sequences. Therefore we have no method of testing
the numerical accuracy of this time-dependent model,
although the above comparisons test the end-member
cases.
[29] Here we model an infinitely long vertical strike-slip

fault that is embedded in a 50-km-thick elastic plate
overlying a viscoelastic half-space with Maxwell time
constant tm. We consider the two cases of deep slip and

Figure 2. Comparison of fault-parallel displacement as a function of distance from the fault, x, with
respect to plate thickness, H, for Fourier model profiles and existing 2-D analytic solutions. Deep fault
displacement for a homogeneous half-space Fourier model is represented by the solid black line;
displacement for a layered half-space model simulating an elastic plate overlying a fluid half-space is
represented by the dashed black line. Note how the layered half-space model has only half the amplitude
of the homogeneous half-space model due to the inherent relationship that exists between the far-field
displacement and the fraction of the plate that is cracked. Both homogenous and layered half-space
Fourier models have relative errors (gray inset) less than 0.2% when compared to their respective analytic
solutions, the Weertman [1964] and Rybicki [1971] models, respectively. Although the Rybicki [1971]
solution is limited by the number of terms (m) included in the infinite series, the homogeneous half-space
model comparison yields larger relative errors in the longer wavelengths, requiring a larger grid size to
lower the relative error.
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shallow slip, representing interseismic and coseismic defor-
mation, respectively. In the deep slip case a constant slip
rate is applied along the fault in the lower half of the plate
(Figure 3a) to simulate interseismic deformation. The initial
deformation rate (t = 0) matches the elastic half-space
solution but eventually evolves to the solution for an elastic
plate overlying a fluid half-space (t = 1). A full step
function of plate velocity is achieved at times greater than
t = 100tm, which we will henceforth refer to as the ‘‘secular
model.’’ In the shallow slip case (Figure 3b), 4 m of slip are

applied to the upper half of the plate to simulate coseismic
and postseismic deformation. The combined displacement
(secular model + coseismic/postseismic) (Figure 3c)
achieves a full 4 m step after 20tm of postseismic relaxation.
This model shows good qualitative agreement with previous
studies [e.g., Nur and Mavko, 1974; Rundle and Jackson,
1977; Savage and Prescott, 1978; Ward, 1985; Cohen,
1999].
[30] An important aspect of this ‘‘plate’’ model is that

far-field deformation is partitioned into a secular part and

Figure 3. Fault-parallel displacement profiles of the Fourier model as a function of distance from the
fault, x, with respect to plate thickness, H. Model results are obtained at multiples of Maxwell time (tm =
24 yrs). Black dashed (t = 0) and black solid (t = 1) profile lines represent time-dependent end-member
cases reviewed by Cohen [1999] of the Nur and Mavko [1974] model. (a) Evolution of the secular model
showing deep slip over geologic time. Note that the black solid line represents the fully relaxed ‘‘secular’’
model that is used in further models to describe deep slip occurring from the lower depth of the locked
fault to the base of the elastic plate. (b) Coseismic (black dashed line) and postseismic models (gray
dashed lines) showing shallow deformation from an earthquake occurring at teq that resulted from 4 m of
accumulated slip. (c) Total deformation resulting from the combination of the secular model (a, t = 1)
and the time-dependent postseismic models of (b) that capture the full 4 m of displacement. Note the full
block offset of the elastic plate that is illustrated by the step function of (c) for times greater than 20 tm.
This behavior is due to deformation contributions from all plate depths (locked and secular).
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a seismic part according to the ratio of the lower and
upper fault heights [Savage and Prescott, 1978; Ward,
1985]. In this example, where the height ratio of the
lower and upper faults is equal, only 1/2 of the far-field
deformation is accommodated by the secular model. The
other half of the far-field deformation results from
repeated earthquakes. While this is an interesting curiosity
for purely 2-D models, it has important physical impli-
cations for 3-D models. These issues will be discussed in
section 4.

3.2. Boussinesq Analytic Comparisons

[31] With the exception of the 3-D elastic half-space
solution [Okada, 1985, 1992], thus far we have only
discussed 2-D models where the surface normal stress is
zero. However, to test our solutions in 3-D requires testing
the response of the model to vertical loads (Appendix A).
To do this, we first compare our solution to the analytic
solution for the response of an elastic half-space to an
applied vertical load [Love, 1944]. We then qualitatively
examine layered half-space models with and without a
gravitational restoring force. Finally, we provide a numer-
ical comparison between our 3-D layered model and the
flexure model of a thin elastic plate overlying a fluid half-
space [Brotchie and Silvester, 1969; Turcotte and Schubert,
1982].
3.2.1. Vertical Point Load on an Elastic Half-Space
[32] As an initial test, we compare our Boussinesq solu-

tion (Appendix A) to the analytic solution for a point load
applied to a uniform elastic half-space. The Love [1944]
solution for 3-D displacement of an elastic half-space
subjected to a point load (z 6¼ 0) is

U x; yð Þ ¼ P

4p
1

m
xz

r3
� 1

lþ mð Þ
x

r zþ rð Þ

� �
;

V x; yð Þ ¼ P

4p
1

m
yz

r3
� 1

lþ mð Þ
y

r zþ rð Þ

� �
;

W x; yð Þ ¼ � P

4p
1

m
z2

r3
� lþ 2mð Þ
m lþ mð Þ

1

r

� �
;

ð11Þ

where U, V, and W are displacement components as a
function of x, y, and z spatial coordinates, P is the point load
magnitude, r is the radial distance (r2 = x2 + y2 + z2), and l
and m are the elastic constants.
[33] For the Fourier model we apply a vertical point load

(Fz = P = 1 MPa) to the center of the grid and compare the
results at depths of 2 (Figure 4) and 10 grid cell spacings to
avoid the singular point in the Love [1944] solutions. The
comparison with the analytic solution shows agreement to
one part in 102 as most of the disagreement occurs directly
under the load, which is only two grid cells deep. For these
tests, initially we do not include the restoring force of
gravity. The code is tested in two ways: first, by equating
the elastic constants of the layer and the half-space, and
second, by increasing the layer thickness H to 10 times the
largest dimension of the grid. These two approaches show
agreement to one part in 105, which is the accuracy of our
single-precision FFT code. (Note that in our computer code
the transfer functions are all computed in double precision,
but the 2-D arrays are stored in single precision to save
computer memory.)

3.2.2. Gravitational Restoring Force
[34] We qualitatively investigate the effects of the

gravitational restoring force for both half-space and
layered models to illustrate that gravity is essential for
modeling the long-term behavior of a layered Earth in
response to vertical loads. In Appendix A we solve for
the Boussinesq coefficients for the following four cases:
(1) homogeneous half-space (no gravity); (2) homoge-
neous half-space with gravity; (3) layered half-space
solution (no gravity); and (4) layered half-space solution
with gravity. Here we demonstrate the different vertical
responses of these special cases due to a vertical point
load. In the subsequent examples we use the following
parameters: Fz = 1 MPa, H = 10 km, m1 = 28 GPa, and
E1 = 70 GPa. For the two examples that examine the
effects of a layered half-space (cases 3 and 4) we use a
half-space shear modulus of m2 = 0 to simulate an elastic
plate overlying a fluid half-space but require the bulk
modulus, k, to remain constant. In addition, for those
examples that include the gravitational contribution (cases 2
and 4), r = 3300 kg m�3 and g = 9.81 m s�2.
3.2.2.1. Homogeneous Half-Space Boussinesq Solution
(No Gravity), M2 = M1, g = 0
[35] This case was discussed in section 3.2.1 and is

provided here as a reference model. Figure 5a shows the
vertical solution in planform, demonstrating the negative
bull’s-eye region in the center of the grid. Figure 6 (gray
dashed curve) shows the solution in profile.
3.2.2.2. Homogeneous Half-Space Boussinesq Solution
With Gravity, M2 = M1, g Included
[36] Next we include the restoring force of gravity in the

homogenous elastic half-space model (Figures 5b and 6,
black dashed curve). Note that this solution compares to that
of Figure 5a, although magnitudes are slightly larger. It is
clear that gravity has little effect on the solution for this
model, confirming that gravity can be ignored in elastic
half-space dislocation models.
3.2.2.3. Layered Half-Space Boussinesq Solution
(No Gravity), M2 = 0, g = 0
[37] Next we consider the response of a point load

applied to an elastic plate overlying a fluid half-space,
ignoring the gravitational restoring force (Figure 5c). This
approach leads to an absurd result with a spatially magnified
deflection that is highly dependent upon the dimensions of
the grid. This is clearly an unphysical case because the
vertical forces are not balanced. The restoring force of
gravity is essential in layered dislocation models when the
substrate is a fluid.
3.2.2.4. Layered Half-Space Boussinesq Solution With
Gravity, M2 = 0, g Included
[38] Lastly, we consider an elastic plate overlying a fluid

half-space, this time including the restoring force of gravity
(Figures 5d and 6, gray solid curve). Including gravity
balances the vertical forces and eliminates unreasonable
amplitudes, as seen in Figure 5c. Note that the layered
model has significantly more vertical deformation than the
half-space model.
3.2.3. Thin Plate Flexure Approximation
[39] As a partial numerical test of the layered model, we

compare our Boussinesq solution to the analytic solution for
the flexural response of a thin elastic plate due to a point
surface load. The vertical force balance for flexure, w, of a
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thin elastic plate floating on a fluid half-space [Turcotte and
Schubert, 1982] is given by

D
d4w

dx4
þ rgw ¼ P xð Þ; ð12Þ

where the vertical load, P(x), is balanced by the flexural
resistance of the plate and the gravitational restoring force,
rg; D is the flexural rigidity. The flexure solution in the
wave number domain is given by

W kð Þ ¼ P kð Þ Dk4 þ rg
� ��1

; ð13Þ

where the flexural rigidity is related to the plate thickness
and elastic constants E and u (Poisson’s ratio) by

D ¼ EH3

12 1� u2ð Þ : ð14Þ

[40] We compare the flexure solution of equation (13)
(Figure 5e, Figure 6, solid black curve) to the point load
response of the layered Boussinesq solution (Figure 5d). Far
from the center of the load, the two models show excellent
agreement, although they disagree near the load where the
thin plate approximation is no longer valid (Figure 5f). It is
interesting to note that the sum of the flexure model
(Figure 6, solid black line) and the half-space model
(Figure 6, dashed gray line) provides a numerical agreement
with the Boussinesq plate solution (Figure 6, solid gray line)

to an accuracy of 0.1%. These results are also confirmed by
the static flexure solution of Brotchie and Silvester [1969]
with similar parameters.

4. 3-D Time-Dependent Deformation and Stress

[41] Having demonstrated the 2-D behavior and accuracy
of our Fourier model, along with the vertical response of
the layered Boussinesq solution, we now present a 3-D
simulation of the earthquake cycle that includes multiple
fault elements and explores postseismic deformation for
intermediate timescales following an earthquake. The basic
model (Figure 7) consists of a fault with three independent
segments, A, B, and C, that are embedded in a 50-km-thick
elastic plate that is loaded by 40 mm yr�1 of strike-slip plate
motion. Between earthquakes the middle fault segment, B,
is locked from the surface to a depth of 25 km, below which
deep, secular slip occurs. The two adjacent fault segments,
A and C, are allowed to slip completely to the surface,
simulating uniform fault creep. In this model the fault
system is a mature one (geologically evolved), where
although t = 0 years represents the time of model initiation,
we assume that a full secular velocity plate step is already in
place. The model spans 300+ years, where the first 100 years
include secular tectonic loading. At t = 100 years we
simulate an earthquake by initiating 4 m of coseismic
shallow slip (depths <25 km) on segment B. Postseismic
deformation, due to viscoelastic relaxation of the half-space,
begins immediately after the event. We present single-year-
averaged snapshots at multiples of Maxwell time for both
3-D velocity and Coulomb stress. Animated movies of

Figure 4. Horizontal and vertical response to a vertical point load applied to a homogeneous elastic
medium (m1 = m2, or H = 1) at a depth of 2 grid cell spacings (2 km). Boussinesq models are shown for
both (a) horizontal UB and (b) vertical WB, solutions (from Appendix A). Comparisons with the Love
[1944] solutions yield relative errors (gray insets) for both horizontal and vertical components that are
primarily less than 1%.
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these models can be found online at http://topex.ucsd.edu/
body_force.

4.1. 3-D Velocity

[42] The 3-D velocity field is computed by calculating
the change in displacement over 1 year time increments.
For secular velocity the time increment is largely irrelevant
as the secular model behavior is assumed steady state.
However, when an earthquake occurs during the time
interval, the velocity is equal to the coseismic/postseismic
deformation divided by 1 year. Secular velocity is shown
in map view (Figure 8a), where U represents fault-
perpendicular velocity, V represents fault-parallel velocity,
and W represents vertical velocity. The fault-parallel
velocity V shows a step change across the creeping seg-
ments (A and C) and a more gradual transition across the
locked section. Alternatively, the U and W components
show little velocity contribution from the segments that are
creeping, while moderate amplitudes, 10 mm yr�1 and

4 mm yr�1, respectively, are exhibited at the fault tips.
Also noted are the reversing quadrants of the vertical
velocity field, W, and also the reversal of amplitude in the
near and far fields. For example, in the far field, positive
velocity (uplift) is noted in the direction of fault move-
ment, while in the near field, negative velocity (subsi-
dence) is found at the fault tip. The 3-D secular behavior
of the earthquake cycle demonstrated here is assumed to
be steady state.
[43] Coseismic velocity is shown in Figure 8b. Both U

and W velocities reverse sign and reach amplitudes of
±0.8 m yr�1 and ±0.2 m yr�1, respectively, in response to
the earthquake. Alternatively, the fault-parallel velocity
component, V, coseismically responds by lurching forward
in the direction of tectonic motion at ±2 m yr�1 at the time
of the earthquake. This type of behavior has been estab-
lished by previous fault models [e.g., Chinnery, 1961;
Okada, 1985, 1992; Yang and Toksoz, 1981] for elastic
strike-slip deformation of a vertical fault.
[44] Deformation continues for several Maxwell times

(Figures 9–11) following the earthquake. Note that we
have removed the secular (tectonic loading) component
for times following the earthquake in order to isolate the
postseismic velocity response. The U component (Figure 9)
is reversed in sign with respect to the secular model and
slowly diminishes in both wavelength and magnitude, com-
pletely dissipating by �10tm, or �240 years, after the
earthquake. Likewise, the V component (Figure 10) slowly
decreases in magnitude and spatial dimension before com-
pletely disappearing by �10tm. Finally, the vertical velocity
component, W (Figure 11), demonstrates an accelerative
behavior for a short time after the earthquake. The vertical
velocity field increases for times less than 2tm, followed by
a slow decrease that remains for times greater than 5tm. The
timescale for such an acceleration/deceleration of deforma-
tion direction depends strongly on plate thickness and half-
space density. Like the other components, the vertical
velocity diminishes completely by 10tm following the
earthquake.

4.2. Coulomb Stress

[45] Coulomb stress provides a measure of the shear
loading on faults of a particular azimuth [e.g., Stein et al.,
1994; Harris, 1998; Harris and Simpson, 1998], where
positive Coulomb stress indicates that a fault plane is
brought closer to failure, while negative stress indicates
that the fault plane has moved away from failure. To
calculate Coulomb stress, we follow the approach of King
et al. [1994], where the Coulomb failure criterion, sf, is
defined by

sf ¼ t� mf sn:

In this equation, sn and t are the normal and shear stress on
a failure plane, respectively, and mf is the effective
coefficient of friction. Our model provides the 3-D vector
displacement field from which we compute the stress tensor.
Right-lateral shear stress and extension are assumed to be
positive. Because Coulomb stress is zero at the surface and
becomes singular at the locking depth, we calculate
Coulomb stress at 1/2 of the local locking depth [King et
al., 1994] and choose mf to be 0.6.

Figure 5. Map view of the vertical Boussinesq response
(in mm) to a vertical point load: (a) homogeneous elastic
half-space model without a gravitational restoring force; (b)
homogeneous elastic half-space model with a gravitational
restoring force; (c) elastic plate overlying a fluid half-space
model without a gravitational restoring force; (d) elastic
plate overlying a fluid half-space model with a gravitational
restoring force; (e) flexural response from the thin plate
approximation [Le Pinchon et al., 1973; McKenzie and
Bowin, 1976]; (f ) residual difference between (d) and (e).
Note that color scale differs for each plot.
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[46] Our objective is to track the accumulation of Cou-
lomb stress both before and after an earthquake (Figure 12).
During the 100 years prior to the earthquake, Coulomb
stress accumulates near the locked fault at a rate of
�0.04 MPa yr�1, ultimately increasing to a peak value of
4 MPa (Figure 12, t = 25, 50, 75 years). An earthquake
releases all accumulated stress and even reverses the sign. In
order to isolate the postseismic effects due to viscoelastic
relaxation, we have removed the secular (tectonic loading)
component for times greater than t = 100 years. A zone of
negative Coulomb stress (stress shadow) develops and then
decreases in amplitude and wavelength for at least 2tm, or
�50 years. Had we included the secular tectonic compo-
nent, the Coulomb stress shadow would have existed for
only �0.5tm, or �13 years, followed by a repeated stress
accumulation process.

5. Discussion

[47] These examples demonstrate essential features of
3-D deformation and stress during the earthquake cycle
and agree with other full 3-D numerical models of the
earthquake cycle [Deng et al., 1998; Kenner and Segall,
1999; Pollitz et al., 2000, 2001; Zeng, 2001]. The primary
difference between a layered viscoelastic model and
an elastic half-space model is in the vertical velocity.

Figure 6. Vertical profiles as a function of distance, x, acquired for the Boussinesq results of Figure 5
for a half-space model without a gravitational restoring force (dashed gray line, a), a half-space model
with a gravitational restoring force (dashed black line, b), an elastic plate overlying a fluid half-space
model (solid gray line, d), and the thin plate flexure approximation (solid black line, e). Combining the
vertical results of the half-space model (dashed gray line) and the flexure solution (solid black line)
yields a model with numerical accuracy of 10�3 when compared to the Boussinesq plate model (solid
gray line).

Figure 7. Along-fault vertical transect of the three-
segment model embedded in an elastic plate of 50 km
overlying a Maxwell viscoelastic half-space. Segments A
and C are identified by zero locking depths (creeping), while
segment B is locked from the surface (d2 = 0) to a depth
of 25 km. Model parameters included shear modulus (m1),
Young’s modulus (E1), density (r), and half-space viscosity
(h). Secular plate velocity, Vo, is set to 40 mm yr�1.
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Following a right-lateral earthquake, we observe increasing
vertical velocity (Figure 11) that produces uplift in the
northeast and southwest quadrants and subsidence in the
northwest and southeast quadrants. This behavior persists
for at least two Maxwell times (�50 years) and then
gradually subsides.
[48] The wavelength and timescale of this vertical

velocity feature is largely dependent upon the elastic plate
thickness and half-space viscosity. The wavelength of
vertical deformation is related to the flexural wavelength,
and thus for a 50-km-thick plate the characteristic wave-
length of the vertical deformation pattern is �440 km.
However, the observed lobate vertical velocity patterns
following the Landers and Hector Mine earthquakes have
a much smaller horizontal wavelength, requiring a much
thinner plate (�10 km) [Deng et al., 1998; Pollitz et al.,
2001].
[49] The timescale of the vertical velocity acceleration

and decay also depends on both the plate thickness and
the half-space viscosity. A plate of 25 km thickness, as

opposed to a 50-km-thick plate, responds on a longer
timescale, suggesting that the postglacial rebound time-
scale is providing a minor contribution to the vertical
response. The postglacial rebound timescale [Turcotte
and Schubert, 1982] is given by

tg ¼ 4ph=rgl;

where l is the wavelength of deformation and h, r, and g
are viscosity, density, and gravity, respectively. Because
rebound timescale is inversely proportional to the wave-
length of the deformation (which is controlled by the
flexural wavelength of the elastic plate), a thinner plate (i.e.,
smaller l) has a longer postglacial rebound timescale. The
50-km-thick plate has a postglacial timescale of 280 years
for a viscosity of 1019 Pa s, while the shorter wavelength
associated with the thinner plate has a longer postglacial
timescale (500 years).
[50] Our model also demonstrates stress behavior due to

time-dependent postseismic readjustment (Figure 12) in

Figure 8. Map view of velocity results of the three-segment model (segments A, B, and C) shown
for U (fault-perpendicular), V (fault-parallel), and W (vertical) components for (a) secular velocity
(mm/yr) and (b) coseismic velocity (or displacement difference over one year, m/yr) from an
earthquake event at t = teq = 100 years. Because the secular behavior of our model is assumed to be
steady state, (a) represents the 3-D velocity field for times t = 0–99 years. Creeping segments A
and C are identified by a solid gray line, while locked fault segment B is indicated by a gray dashed
line.
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agreement with previous studies [Harris and Simpson,
1993, 1996; Zeng, 2001]. Following an earthquake, a
stress shadow develops. This stress shadow should, in
theory, inhibit the occurrence of subsequent seismic events
such as aftershocks and large triggered earthquakes. As
time advances, the spatial extent and magnitude of the
stress shadow decays nonuniformly [Ward, 1985]. Even-
tually the locked fault becomes reloaded with tectonic

stress and relaxation ceases, resulting in positive stress
accumulation surrounding the fault and a resumption of
the earthquake cycle.
[51] Realistic models exhibiting similar stress shadow-

ing behaviors and fault interactions have been explored by
other workers [e.g., Kenner and Segall, 1999; Parsons,
2002]. A 2-D postseismic shear stress model of Kenner
and Segall [1999] demonstrated that an initial stress

Figure 9. Map view of postseismic response for U (fault-perpendicular) horizontal velocity component
at t = 100 yrs (teq) + multiples of Maxwell time (0.25, 0.5, 0.75, 1, 2, 3,4, 5, and 10 tm) in mm/yr.
Displacement is calculated at half-year increments and velocity is computed by differencing two of these
increments spanning one year. The gray dashed line indicates location of fault segment B. Positive
velocities indicate change in displacement in the positive x direction; negative velocities indicate change
in displacement in the negative x direction. The velocity for the U component slowly decreases after the
earthquake and diminishes completely by approximately 10tm.
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decrease, followed by viscoelastic relaxation, encouraged
increases of stress duration and magnitude for particular
fault geometries. In addition, changes in Coulomb stress
are shown to be highly sensitive to kinks in fault
geometry and jumps in slip distribution [Freed and Lin,
2001; Kilb et al., 2002]. While we have obviously
eliminated such geometrical effects by embedding a
straight fault system of constant slip with depth for this
analysis, more complicated simulations have shown high
rates of stress at junctions of fault bends. A fault system
with bends and kinks produces anomalous Coulomb stress

at fault segment tips that is never fully released by strike-
slip motion. Alternative mechanisms, such as normal
faulting, may be required to cancel accumulating stress
due to geometrical effects. These ideas will be more
completely explored in a following paper (B. Smith and
D. Sandwell, manuscript in preparation, 2004).

6. Conclusions

[52] We have developed and tested a semianalytic
model for the 3-D response of a Maxwell viscoelastic

Figure 10. Map view of postseismic response for V (fault-parallel) horizontal velocity component at
t = 100 yrs (teq) + multiples of Maxwell time (0.25, 0.5, 0.75, 1, 2, 3,4, 5, and 10 tm) in mm/yr.
Positive velocities indicate change in displacement in the positive y direction; negative velocities
indicate change in displacement in the negative y direction. The velocity for the V component slowly
decreases after the earthquake and diminishes completely by approximately 10tm.
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layered half-space due to an arbitrary distribution of
body forces. For a vertical fault, 2-D convolutions are
performed in the Fourier transform domain, and thus
displacement, strain, and stress due to a complicated fault
trace can be computed very quickly. Using the Corre-
spondence Principle, the solutions for a layered elastic
half-space are easily extended to that of a viscoelastic
half-space without increasing the computational burden.

The horizontal complexity of the fault system has no
effect on the speed of the computation; a model with a
prescribed time, consisting of hundreds of fault elements,
requires less than 40 s of CPU time on a desktop
computer. Because multiple earthquakes are required to
fully capture viscoelastic behavior, our model is capable
of efficiently computing 3-D viscoelastic models spanning
thousands of years.

Figure 11. Map view of postseismic response for W (vertical) velocity component at t = 100 yrs (teq) +
multiples of Maxwell time (0.25, 0.5, 0.75, 1, 2, 3,4, 5, and 10 tm) in mm/yr. Positive velocities indicate
change in displacement in the positive z direction (uplift); negative velocities indicate change in
displacement in the negative z direction (subsidence). The velocity for the W component temporarily
increases after the earthquake until approximately 2tm, followed by a decrease in velocity in the same
directional sense.
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[53] Our model has the accuracy and speed necessary
for computing both geometrically and temporally complex
models of the earthquake cycle. Here we have demon-
strated the basic 2-D and 3-D deformation behavior of a
generalized simple fault system. We find that the evolving
velocity field, particularly the vertical component, demon-
strates an overall decelerative behavior dependent upon
plate thickness, although a temporary velocity increase is

also observed. We also investigate the temporal behavior
of the Coulomb stress field and find that a stress shadow
exists for at least two Maxwell times and slowly decays as
stress is redistributed in the plate and tectonic loading
dominates.
[54] Now that this modeling approach is understood and

fully tested, it will be used to simulate the complex time-
dependent stress evolution of realistic tectonic boundaries

Figure 12. Map view results of Coulomb stress in MPa for a typical earthquake cycle. For the first
100 years (t = 25, 50, 75, . . . yrs), secular Coulomb stress accumulates on the locked fault at a rate of
�0.04 MPa/year. At t = teq = 100 yrs, an earthquake occurs that removes all of the positive stress,
followed by snapshots of the Coulomb stress shadow (t = 100+ yrs) marked by regions of negative stress.
In order to isolate the postseismic effects due to stress transfer, we have removed the secular (tectonic
loading) component for times greater than t = 100 yrs.
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on Earth, such as the San Andreas Fault system. We are
currently establishing a suite of models, consistent with both
geodetic and geological observations, that will increase our
understanding of how temporal plate boundary deformation
and stress variations within the seismogenic crust can result
from different tectonic settings throughout the earthquake
cycle.

Appendix A: Boussinesq Problem for a Layered
Half-Space

[55] The Boussinesq problem [Boussinesq, 1885; Steketee,
1958] offers a supplemental solution for removing anoma-
lous vertical normal stress that arises from the method of
images [Weertman, 1964], used to partially satisfy the
zero-shear surface boundary condition for a homogeneous
elastic half-space. Likewise, for a layered elastic half-
space, multiple image sources must be included to partially
satisfy the surface boundary condition (Appendix B) and
the Boussinesq approach must be used to remove the
remaining normal tractions. Unfortunately, the Boussinesq
solution for a homogeneous half-space does not fully
satisfy the boundary conditions for a layered elastic half-
space and an alternative solution must be derived. Our
contribution to this problem is to develop a Boussinesq-
like solution that reflects a new set of elastic solutions
that accounts for normal tractions in a layer overlying a
half-space.
[56] When solving the Boussinesq problem for a layered

elastic half-space, an approach similar to that of the homo-
geneous half-space applies [e.g., Steketee, 1958; Smith and
Sandwell, 2003]. The major exceptions to this approach are
the additional boundary conditions [Burmister, 1943] (note
that the following notation uses subscripts 1 and 2 to refer to
layer and half-space displacement and stress, respectively,
and a lowercase h is used in place of H for the plate
thickness, or layer interface):
[57] 1. The surface layer must be free of shear and normal

stress, except those imposed to balance the remaining
normal tractions (t33) and provide gravitational support
(rg), if necessary. Gravity plays an important role in
modulating long-term vertical motion:

tzz1 ¼ �t33 þ rgW1 jz¼0 txz1 ¼ tyz1 ¼ 0
��
z¼0

: ðA1Þ

[58] 2. Stress and displacement across the layer interface
must be continuous:

txz1 ¼ txz2jz¼�h U1 ¼ U2jz¼�h

tyz1 ¼ tyz2
��
z¼�h

V1 ¼ V2jz¼�h

tzz1 ¼ tzz2jz¼�h W1 ¼ W2jz¼�h

: ðA2Þ

[59] 3. At infinite depth, stress and displacements below
the layer must go to zero:

txz2 ¼ tyz2 ¼ tzz2 ¼ 0
��
z¼�1 U2 ¼ V2 ¼ W2 ¼ 0jz¼�1:

ðA3Þ

[60] Our approach is to find the Galerkin vector Gi

[Steketee, 1958] for the complimentary solutions that satisfy
the above boundary conditions for both displacements and
stress in both the elastic layer (layer 1) and the half-space
below (layer 2). We begin by writing both displacement and
stress in terms of the Galerkin vector:

ui ¼ Gi;kk � aGk;ki

tij ¼ l 1� að ÞdijGk;kll þ m Gj;ikk þ Gi;jkk

� �
� 2maGk;kij;

ðA4Þ

or, more explicitly,

UB ¼ �a
@2G
@x@z

; txz ¼ m
@

@x
r2G� 2a

@2G
@z2

� �
;

VB ¼ �a
@2G
@y@z

; tyz ¼ m
@

@y
r2G� 2a

@2G
@z2

� �
; ðA5Þ

WB ¼ �a
@2G
@z2

þr2G; tzz ¼ m
@

@z

a
x

� �
r2G� 2a

@2G
@z2

� �
;

where m and l are the elastic constants, a = (l + m)/(l + 2m),
and x = (l + m)/(3l + 4m).
[61] As described by Love [1929] and Timoshenko

[1934], the stress and displacement equations of elasticity
must satisfy the equation of compatibility, most commonly
known as the biharmonic equation:

r4G ¼ @

@x2
r2G
� �

þ @

@y2
r2G
� �

þ @

@z2
r2G
� �

¼ 0: ðA6Þ

The general solution to this problem is

G ¼ Aþ Czð Þebz � Bþ Dzð Þe�bz; ðA7Þ

where b = 2pjkj and jkj = kx
2 + ky

2. For the layered model,
layers 1 and 2 will have the following representation with
corresponding elastic constants m1, l1, and m2, l2:

G1 ¼ A1 þ C1zð Þebz � B1 þ D1zð Þe�bz

G2 ¼ A2 þ C2zð Þebz � B2 þ D2zð Þe�bz:

ðA8Þ

Likewise, the two layers will have displacements and stress
as functions of their respective Galerkin vectors:

layer 1 ¼ UB1 G1ð Þ; VB1 G1ð Þ; WB1 G1ð Þ; txz1 G1ð Þ;
tyz1 G1ð Þ; tzz1 G1ð Þ

layer 2 ¼ UB2 G2ð Þ; VB2 G2ð Þ; WB2 G2ð Þ; txz2 G2ð Þ;
tyz2 G2ð Þ; tzz2 G2ð Þ

[62] To satisfy the zero displacement boundary condition
as z ! �1, B2 = D2 = 0. The Galerkin vectors (A8) then
take on the form

G1 ¼ A1 þ C1zð Þebz � B1 þ D1zð Þe�bz

G2 ¼ A2 þ C2zð Þebz:
ðA9Þ
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By substituting the above Galerkin vectors and their
associated derivatives into the equations for stress and
displacement in both layers (A5), the Boussinesq solutions
become

UB1 ¼ �i2pkxa1 A1bebz þ B1be�bz�
þ C1 1þ bzð Þebz � D1 1� bzð Þe�bz�

VB1 ¼ �i2pkya1 A1bebz þ B1be�bz�
þ C1 1þ bzð Þebz � D1 1� bzð Þe�bz�

WB1 ¼ �ba1 A1bebz � B1be�bz�
þ C1 2þ bz� 2=a1ð Þebz

þ D1 2� bz� 2=a1ð Þe�bz�
UB2 ¼ �i2pkxa2 A2bebz þ C2 1þ bzð Þebz

� �
VB2 ¼ �i2pkya2 A2bebz þ C2 1þ bzð Þebz

� �
WB2 ¼ �ba2 A2bebz þ C2 2þ bz� 2=a2ð Þebz

� �
ðA10Þ

txz1 ¼ �i4pkxm1a1b A1bebz � B1be�bz�
þ C1 2þ bz� 1=a1ð Þebz

þ D1 2� bz� 1=a1ð Þe�bz�
tyz1 ¼ �i4pkym1a1b A1bebz � B1be�bz�

þ C1 2þ bz� 1=a1ð Þebz

þ D1 2� bz� 1=a1ð Þe�bz�
tzz1 ¼ �2m1a1b2 A1bebz þ B1be�bz�

þ C1 3þ bz� 1=x1ð Þebz

� D1 3� bz� 1=x1ð Þe�bz�
txz2 ¼ �i4pkxm2a2b A2bebz

�
þ C2 2þ bz� 1=a2ð Þebz

�
tyz2 ¼ �i4pkym2a2b A2bebz

�
þ C2 2þ bz� 1=a2ð Þebz

�
tzz2 ¼ �2m2a2b2 A2bebz

�
þ C2 3þ bz� 1=x2ð Þebz

�
;

where a1 = a(m1, l1), x1 = x(m1, l1), a2 = a(m2, l2), and
x2 = x(m2, l2). We can use these solutions and the
appropriate boundary conditions (A1)–(A3) to solve for
the six remaining Boussinesq coefficients A1, B1, C1, D1,
A2, and C2. Noting the symmetry between UB, VB and txz,
tyz in equation (A10), we reduce the set of boundary
conditions from nine to six:

U1 ¼ U2jz¼�h; tzz1 ¼ �t33 þ rgW jz¼0;

W1 ¼ W2jz¼�h; txz1 ¼ 0jz¼0;

txz1 ¼ txz2jz¼�h;

tzz1 ¼ tzz2jz¼�h:

ðA11Þ

This step results in six equations and six unknown
Boussinesq coefficients. By substituting equations (A10)
into (A11), we have the following linear system of
equations, where y = a1b/t33:

We next invert equation (A12) to solve for the A1, B1, C1,
D1, A2, and C2. The solutions for the six Boussinesq
coefficients, of arbitrary elastic constants and including the
gravitational restoring force, rg, are

1

0

0

0

0

0

2
6666664

3
7777775
¼

yb 2m1b� rgð Þ yb 2m1bþ rgð Þ 2y m1b 3� 1=x1ð Þ � rg 1� 1=a1ð Þð Þ �2y m1b 3� 1=x1ð Þ þ rg 1� 1=a1ð Þð Þ 0 0

b �b 2� 1=a1ð Þ 2� 1=a1ð Þ 0 0

m1a1be�bh �m1a1bebh m1a1 2� bh� 1=a1ð Þe�bh m1a1 2þ bh� 1=a1ð Þebh �m2a2be�bh �m2a2 2� bh� 1=a2ð Þe�bh

m1a1be�bh m1a1bebh m1a1 3� bh� 1=x1ð Þe�bh �m1a1 3þ bh� 1=x1ð Þebh �m2a2be�bh �m2a2 3� bh� 1=x2ð Þe�bh

a1be�bh a1bebh a1 1� bhð Þe�bh �a1 1þ bhð Þebh �a2be�bh �a2 1� bhð Þe�bh

a1be�bh �a1bebh a1 2� bh� 2=a1ð Þe�bh a1 2þ bh� 2=a1ð Þebh �a2be�bh �a2 2� bh� 2=a2ð Þe�bh

2
6666664

3
7777775

A1

B1

C1

D1

A2

C2

2
6666664

3
7777775
:

ðA12Þ

A1 ¼
1

d
b2

l2 þ m2ð Þ
l1 þ 2m1ð Þ2 l2 þ 2m2ð Þ2




m21l2 l1 þ m1ð Þ 2m1 b2h2e�2bh
� ��

�l1 1� e�2bh 1� 2bhþ 2b2h2
� �� ��

�m22l1 l2 þ m2ð Þ l1 1þ e�2bh
��

1� 2bhþ 2b2h2
� ���

�m1m2

m1

4l1l2 � 8m1m2e
�2bh 1� b2h2

� �

þ3 l1 þ m1ð Þ
l1 1� e�2bh 1� 2bhþ 2b2h2

� �� �
�2m1b

2h2e�2bh

8<
:

9=
;

2
66664

3
77775

þm2
4l2

1 1� e�2bh bhþ b2h2
� �� �

þl1 l2 þ m2ð Þ 3� e�2bh 3� 2bhþ 4b2h2
� �� �

2
4

3
5

þ2m1m2

l1 5� 2e�2bh 1þ bhþ 2b2h2
� �� �

þ2m1e
�2bh 1� b2h2

� �
þ l2 þ m2ð Þe�2bh 2þ b2h2

� �

2
66664

3
77775

þ2l2
1l2

8>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>;

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

;

ðA13Þ

B1 ¼
1

d
e�2bhb2

l2 þ m2ð Þ
l1 þ 2m1ð Þ2 l2 þ 2m2ð Þ2




m21l2 l1 þ m1ð Þ
l1 1þ 2bh 1þ bhð Þ � e�2bh
� �

þ2m1 b2h2
� �

2
4

3
5

�m22l1 l2 þ m2ð Þ l1 1þ 2bh 1þ 2bhð Þ þ e�2bh
� �� �

þm1m2

m1
4l1l2e

�2bh þ 3m1l1 1þ 2bh 1þ 2bhð Þ � e�2bh
� �

þ3l2
1 1þ 2bh 1þ bhð Þ � e�2bh
� �

2
4

3
5

�m2
4l2

1 bh 1þ bhð Þ � e�2bh
� �

þl1 l2 þ m2ð Þ 3þ 2bh 1þ 2bhð Þ þ 3e�2bh
� �

2
4

3
5

þ2m1m2

l1 2� 2bh 1þ 2bhð Þ þ 3e�2bh
� �

þ2m1 1� b2h2
� �

� l2 þ m2ð Þ 2þ b2h2
� �

2
66664

3
77775

þ2l2
1l2e

�2bh þ 6m31b
2h2

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>;

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

;

ðA14Þ
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C1 ¼
1

d
b3

l1 þ m1ð Þ l2 þ m2ð Þ
l1 þ 2m1ð Þ2 l2 þ 2m2ð Þ2




m21l2 l1 þ m1ð Þ 1� e�2bh 1� 2bhð Þ
� �

þm22l1 l2 þ m2ð Þ 1þ e�2bh 1� 2bhð Þ
� �

þm1m2

m1 3 l1 þ m1ð Þ 1� e�2bh 1� 2bhð Þ
�  � �

þm2

l2 þ m2ð Þ 3þ e�2bh 1� 2bhð Þ
� �

þ2l1 2þ e�2bh 1� 2bhð Þ
� �

2
64

3
75

þ2m1m2 5þ e�2bh 1� 2bhð Þ
� �

þ2l2 l1 þ 2m1ð Þ

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

8>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>;

;

ðA15Þ

D1 ¼
1

d
e�2bhb3

l1 þ m1ð Þ l2 þ m2ð Þ
l1 þ 2m1ð Þ2 l2 þ 2m2ð Þ2




m21l2 l1 þ m1ð Þ 1þ 2bh� e�2bh
� �

�m22l1 l2 þ m2ð Þ 1þ 2bhþ e�2bh
� �

þm1m2

m1 3 l1 þ m1ð Þ 1þ 2bh� e�2bh
�  � �

�m2
l2 þ m2ð Þ 1þ 2bh� 3e�2bh

� �
þ2l1 1þ 2bh� 2e�2bh

� �
2
4

3
5

�2m1m2 1þ 2bh� 3e�2bh
� �

þ2l2 l1 þ 2m1ð Þe�2bh

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>;

;

ðA16Þ

A2 ¼
1

d
2b2m1

l1 þ m1ð Þ
l2 þ 2m2ð Þ l1 þ 2m1ð Þ2




m21
m2 e�2bh 2b2h2 þ 1

� �
� 2bh� 1

� �
þl2 e�2bh 2bh bh� 1ð Þ þ 1ð Þ � 1

� �
8<
:

9=
;

�m22
m1 e�2bh 2b2h2 þ 1

� �
� 2bh� 1

� �
þ2l1 e�2bh b2h2

� �� �
8<
:

9=
;

þm1m2
l1 e�2bh 2b2h2 þ 1

� �
� 2bh� 1

� �
�2l2 e�2bh bh bh� 1ð Þ þ 1ð Þ � bhþ 1

� �
8<
:

9=
;

þm1l1l2 e�2bh 2bh bh� 1ð Þ þ 1½ � � 1
�  

�m2l1l2 e�2bh 2bh bh� 1ð Þ þ 1½ � þ 1
�  

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>;

;

ðA17Þ

C2 ¼
1

d
2m1b

3 l1 þ m1ð Þ l2 þ m2ð Þ
l2 þ 2m2ð Þ l1 þ 2m1ð Þ2




m21 1� e�2bh 1� 2bhð Þ
�  

þ m1m2 3þ e�2bh 1� 2bhð Þ
�  

þ m1l1 1� e�2bh 1� 2bhð Þ
�  

þ m2l1 1þ e�2bh 1� 2bhð Þ
�  

8>>><
>>>:

9>>>=
>>>;
; ðA18Þ

where

d ¼ b4
l1 þ m1ð Þ l2 þ m2ð Þ

l1 þ 2m1ð Þ2 l2 þ 2m2ð Þ2
1

t33

�2m1b
l1 þ 2m1ð Þ d1 þ rgd2

� �
ðA19Þ

and

d1 ¼

m21 l1 þ m1ð Þ2 l2 þ 3m2ð Þ e�4bh � 2e�2bh 1þ 2b2h2
� �

þ 1
� �

þm22l
2
1 l2 þ m2 þ 4m1ð Þ e�4bh þ 2e�2bh 1þ 2b2h2

� �
þ 1

� �

þm1m2

m1m2

l2 þ m2ð Þ 3e�4bh þ 2e�2bh 5þ 2b2h2
� �

þ 3
� �

�2m1 3e�4bh þ 2e�2bh 1� 2b2h2
� �

� 5
� �

�2l1 5e�4bh þ 2e�2bh 1� 4b2h2
� �

� 7
� �

8>>>><
>>>>:

9>>>>=
>>>>;

þ4m2
l1 l2 þ m2ð Þ e�4bh þ 2e�2bh 1þ b2h2

� �
þ 1

� �
�2l2

1 e�4bh þ e�2bh 1þ b2h2
� �� �

2
4

3
5

�2l2 l1 þ m1ð Þ l1 þ 2m1ð Þ e�4bh � 1
� �

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

8>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>;

ðA20Þ

d2¼

�m21l2 l1 þ m1ð Þ e�4bh � 4bhe�2bh � 1
� �

�m22l1 l2 þ m2ð Þ e�4bh þ 4bhe�2bh � 1
� �

þm1m2

m1
4l2 e�4bh þ 1
� �

�3 l1 þ m1ð Þ e�4bh � 4bhe�2bh � 1
� �

2
4

3
5

þm2
4l1 e�4bh � 2bhe�2bh þ 1
� �

� l2 þ m2ð Þ 3e�4bh þ 4bhe�2bh � 3
� �

2
4

3
5

þ2m1m2 3e�4bh � 4bhe�2bh þ 5
� �

þ2l1l2 e�4bh þ 1
� �

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

8>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>;

:

ðA21Þ

[63] These Boussinesq coefficients are greatly simplified
for the case of an elastic plate overlying a fluid half-space
where m2 = 0:

A1 ¼
1

d
b2

l1 þ m1ð Þ
l1 þ 2m1ð Þ2

2m1 b2h2e�2bh� ��
� l1 1� e�2bh 1� 2bhþ 2b2h2

� �� � 
; ðA22Þ

B1 ¼
1

d
e�2bhb2

l1 þ m1ð Þ
l1 þ 2m1ð Þ2

2m1 b2h2
� ��

þ l1 1þ 2bh 1þ bhð Þ � e�2bh� � 
; ðA23Þ

C1 ¼
1

d
a2
1b

3 1� e�2bh 1� 2bhð Þ
�  

; ðA24Þ

D1 ¼
1

d
e�2bha2

1b
3 1þ 2bh� e�2bh�  

; ðA25Þ

A2 ¼
1

d
2b2m21a

2
1 e�2bh 2bh bh� 1ð Þ þ 1ð Þ � 1
�  

; ðA26Þ

C2 ¼
1

d
2b3m21a

2
1 1� e�2bh 1� 2bhð Þ
�  

; ðA27Þ

where

d ¼ �a2
1b

4 1

t33
2m1a1bd1 þ rgd2f g ðA28Þ
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and

d1 ¼ e�4bh � 2e�2bh 1þ 2b2h2
� �

þ 1 ðA29Þ

d2 ¼ e�4bh � 4bhe�2bh � 1: ðA30Þ

[64] In addition to the general coefficients (equations
(A13)–(A21)) and those for the special case of an elastic
plate overlying a fluid half-space (equations (A22)–(A30)),
both including the gravitational restoring force, we have
also solved for the Boussinesq coefficients for two other
cases: (1) a homogeneous elastic half-space without gravity
(m1 = m2, rg = 0) and (2) a layered medium with arbitrary

m1 and m2, also without gravity. These solutions can be
found at http://topex.ucsd.edu/body_force. They have been
individually validated using computer algebra and have
been numerically compared to known analytic models
(Figures 5 and 6).

Appendix B: Method of Images

[65] As addressed in section 2.2, for a simple homoge-
neous half-space model, we can use the method of images
[Weertman, 1964] to place an image vector source opposite
the original vector source to satisfy the requirements of a
stress-free surface (equations (2) and (4)):

U kð Þ

V kð Þ

W kð Þ

2
6666664

3
7777775
¼ U k; zð Þ

¼ Us k; z� að Þ

Fx

Fy

Fz

2
6666664

3
7777775
þ Ui k;�z� að Þ

Fx

Fy

Fz

2
6666664

3
7777775
: ðB1Þ

In equation (B1), the z � a term refers the source body force
vector and the �z � a term refers to the image body force
vector. For a layered half-space though, we must also
require that the displacements and consequent stresses
remain continuous at the boundary layer between varying
shear moduli. To do this, we must superpose multiple image
sources, reflected both above and below the horizontal axis,
to account for both the source and also the layer thickness
(Figure B1). In this approach, an infinite number of
secondary images, m, are reflected above and below the
source vector, located at distances of 2mH (equation (5)):

U kð Þ

V kð Þ

W kð Þ

2
6666664

3
7777775
¼ Us k; z� að Þ

Fx

Fy

Fz

2
6666664

3
7777775
þ Ui k;�z� að Þ

Fx

Fy

Fz

2
6666664

3
7777775

þ
X1
m¼1

m1 � m2
m1 þ m2

� �m

Ui z� a� 2mHð Þ

þ Ui �z� aþ 2mHð Þ

þ Ui z� aþ 2mHð Þ

þ Ui �z� a� 2mHð Þ

2
666666664

3
777777775

Fx

Fy

Fz

2
66664

3
77775: ðB2Þ

In equation (B2), the z � a ± 2mH and �z � a ± 2mH
terms are mirror images of the primary source and image,
respectively. The contrasting shear moduli ratio coefficient
to the left of these terms indicates the level of convergence
of the layered solution. For a layer and half-space of
similar elastic constants, the shear moduli coefficient

Figure B1. Sketch of the source image method for a
layered elastic medium of rigidities m1 (layer of thickness
H ) and m2 (underlying half-space) used to cancel all shear
stress at the surface and preserve continuity across the layer/
half-space interface. Following the method of images
[Weertman, 1964], an infinite number of image terms are
reflected above and below the source vector. For a half-
space model of zero rigidity (a fluid), this sum (equation (5)
or (B2)) is mathematically achieved by an infinite series.
These additional image contributions are represented by
body forces Fs and Fi, and are multiplied by the source and
image matrices of equation (7). Note that the mathematical
expressions for the image sources for z < 0 have an opposite
sign in equation (5) or (B2).
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converges easily. Yet a special case exists when the
underlying half-space has a shear modulus that approaches
zero (Appendix C).

Appendix C: Analytic Treatment of an Infinite
Sum

[66] Inspection of equation (5) (or (B2)) shows that when
the shear modulus of the half-space, m2, goes to zero, the
convergence of the layered solution becomes problematic.
We can treat the infinite sum analytically by summing the
terms from equation (8) that are dependent upon Z: e�bZ and
bZe�bZ.
[67] We first analytically treat the simple exponential,

e�bZ:

X1
m¼1

e�b z0þ2mHð Þ ¼ e�bz0e�b2H
X1
m¼0

e�b2mH ¼ e�bz0 e�b2H

1� e�b2H ;

ðC1Þ

where z0 now represents all terms of the form (±z ± dn), as in
those of equation (6). Next we treat the bZe�bZ term by
noting that

�b
@

@b
e�bZ ¼ bZe�bZ : ðC2Þ

Therefore to evaluate the sum of bZe�bZ, we take the
derivative of the sum of e�bZ with respect to b:

X1
m¼1

b z0 þ 2mHð Þe�b z0þ2mHð Þ ¼ �b
@

@b

X1
m¼1

e�b z0þ2mHð Þ

¼ �b
@

@b
e�b z0þ2Hð Þ

1� e�b2H

¼ e�b z0þ2Hð Þ

1� e�b2Hð Þ


 b z0 þ 2Hð Þ þ 2bHe�b2H

1� e�b2Hð Þ

� �
:

ðC3Þ

For the special case of an elastic plate over a fluid half-space
(m2 = 0), computing the infinite sum of equation (5) (or (B2))
is not necessary, as equations (C2) and (C3) can be used
instead to increase the computational convergence speed.

Appendix D: Including Time Dependence: The
Maxwell Model

[68] Following the method of Nur and Mavko [1974] and
Savage and Prescott [1978], we now describe our approach
for the development of a time-dependent Maxwell model
for 3-D displacement and stress caused by a dislocation in
an elastic layer overlying a linear viscoelastic half-space.
Here we develop viscoelastic coefficients that are used in
conjunction with equations (6)–(8) to manipulate the time
dependence of the viscoelastic problem. This model will

ultimately be used to demonstrate the viscoelastic response
of the Earth throughout the earthquake cycle.
[69] Our theory begins with the description of the visco-

elastic behavior of a Maxwell body made up of an elastic
element and a viscous element, connected in series [Cohen,
1999]. The elastic and viscous element can be represented
mathematically [Jaeger, 1956] by stress, s, and stress rate,
s0, respectively:

s ¼ me ðD1Þ

s0 ¼ he0: ðD2Þ

The elastic element (D1) describes a relationship between
strain, e, and the shear modulus, m, while the viscous
element (D2) describes a relationship between strain rate, e0,
and viscosity, h. Combining both of these linear elements
for a Maxwell body in series, the constituative equation
becomes

e0 ¼ 1

m
s0 þ 1

h
s: ðD3Þ

In addition, the Maxwell time, tm, is a parameter used in
describing the behavior of viscoelastic relaxation. In our
model, we define Maxwell time as tm = 2h/m, although it
should be noted that Maxwell time is defined differently by
various authors (e.g., h/m, h/2m).
[70] We now use the Correspondence Principle for relat-

ing the constituative equation for a Maxwell body (D3) to
our elastic solutions (equations (6)–(8)). According to the
Correspondence Principle, when time-dependent equations
are Laplace transformed, stress and strain relations retain the
same ‘‘form’’ for all linear rheologies. Thus when the elastic
solution is known, a corresponding solution describing a
different rheology can be derived. Hence our first step is to
take the Laplace transform of equation (D3):

L ef g ¼ se sð Þ ¼ s

m
s sð Þ þ 1

h
s sð Þ; ðD4Þ

where s is the Laplace transform variable. Solving for stress,
s, we obtain

s sð Þ ¼ ms
sþ m

h
e sð Þ: ðD5Þ

From equation (D5), we note that as Laplace variable s
approaches zero (zero frequency), the stress, s(s), goes to
zero. Alternatively, as s approaches infinite values, the
stress takes on the form s = me.
[71] As it is our intent to define the half-space shear

modulus, m2, in terms of time, we will assume m = m1 and set

m2 sð Þ ¼ ms
sþ m

h
: ðD6Þ

The Laplace transformed viscoelastic equation,

s sð Þ ¼ m2 sð Þe sð Þ; ðD7Þ
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now takes on the same form as that of the purely elastic
constituative equation (D1).
[72] Through the Correspondence Principle, the visco-

elastic solution can be obtained as follows: (1) replace the
shear modulus in the elastic solution by the Laplace trans-
formed shear modulus variable; (2) compute the inverse
transform of the layered solution; (3) integrate the solution
(impulse response function) to obtain the response to a step
function used to represent an earthquake; (4) identify a
recursion formula for rapid and convenient calculation;
(5) solve for the implied m2 associated with each image in
the infinite layers; (6) ensure the bulk modulus remains
constant by varying l2 for each m2.
[73] Our goal is to map time (t) and viscosity (h) into an

implied m2 and then solve for the corresponding elastic
constant l2 by requiring a constant bulk modulus. We
have already shown that the layered elastic solution may
be described by adding the sources and images associated
with the layer in an infinite series (equations (5)–(6)). We
now focus on the treatment of the shear modulus ratio
inside the infinite series solution, which we will now refer
to as c:

c ¼ m1 � m2
m1 þ m2

: ðD8Þ

We substitute equation (D6) into (D8) and again assume m =
m1. The Laplace transform of c then becomes

c sð Þ ¼
m� ms

sþm=h

mþ ms
sþm=h

¼
m
2h

sþ m
2h
: ðD9Þ

By setting a = m/2h = 1/tm, the inverse of the Maxell time,
we find

c sð Þ ¼ a

sþ a
: ðD10Þ

Because the infinite sum of equations (5)–(6) is raised to
the power of m, we next take the inverse Laplace Transform
of cm(s),

cm tð Þ ¼ amtm�1

m� 1ð Þ! e
�at; ðD11Þ

which is the impulse response function. We next integrate
this impulse response function to obtain the response to a
step function, H(t), which represents seismic faulting events
over time. Let coefficients Am(t) and Bm(t) describe this
behavior:

Z t

0

cm tð Þdt ¼ am

m� 1ð Þ!

Z t

0

tm�1e�atdt ¼ Am tð Þ ðD12Þ

and

Bm tð Þ ¼ m� 1ð Þ!
am

Am tð Þ; ðD13Þ

where

Bm tð Þ ¼
Z t

0

tm�1e�atdt:

Integrating by parts reveals the following recursion formula:

Bm ¼ � tm�1

a
e�at þ m� 1

a
Bm�1; ðD14Þ

where

B1 ¼
Z t

0

e�atdt ¼ 1

a
1� e�at½ �: ðD15Þ

Substituting a = m/2h = 1/tm into D12 and D14, the first
three terms in this infinite series are

m Bm Am

1 tm 1� e�
t

tm

h i
1� e�

t
tm

h i
2 �tmte�

t
tm þ t2m 1� e�

t
tm

h i
� t

tm
e�

t
tm þ 1� e�

t
tm

h i

3 �tmt2e�
t

tm þ 2 �tmte�
t

tm þ t2m 1� e�
t

tm

h in o
� t

tm

� �2
e�

t
tm

2
� t

tm
e�

t
tm þ 1� e�

t
tm

h i
:

ðD16Þ

[74] We next replace the time-integrated shear modulus
ratio (D8) with the new Am coefficients, where each image
source will have its own implied m2:

m1 � m2
m1 þ m2

� �m

¼ Am: ðD17Þ

Solving for the implied m2 corresponding to each Am

coefficient, we obtain

m2 ¼ m1
1� A

1
m
m

1þ A
1
m
m

 !
:

In addition to the time-dependent behavior of the effective
shear modulus of the viscoelastic half-space, we also must
ensure that the bulk modulus, k = l + 2

3
m, remains constant:

k2 ¼ l2 þ
2

3
m2 ¼ constant:

If we set

m2 ¼ m1
1� A

1
m
m

1þ A
1
m
m

 !
; ðD18Þ

then

l2 ¼ k2 �
2

3
m1

1� A
1
m
m

1þ A
1
m
m

 !
: ðD19Þ
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[75] In addition, we must also note that the vertical
Boussinesq load assumes the shear response of a single
Maxwell time. Since we have only solved the vertical
loading problem for an elastic plate overlying a viscoelastic
half-space, we must select the most appropriate viscosity or
Maxwell time. We choose the viscosity of the uppermost
image (m = 1), noting that this is an approximation to the
exact layered behavior. This approach follows the time-
dependent loading problem discussed by Brotchie and
Silvester [1969] where loading is scaled by a similar
viscosity-dependent coefficient. If a vertical load is applied
at t = 0 and the initial elastic response is described as
W(k, 0), then the long-term response of the elastic plate over
a fluid half-space is W(k, 1). For a Maxwell time of tm =
2h/m, the viscoelastic response becomes

W k; tð Þ ¼ W k; 0ð Þ þ 1� e�
t

tm

h i
W k;1ð Þ �W k; 0ð Þ½ �

¼ W k; 0ð Þe� t
tm þ 1� e�

t
tm

h i
W k;1ð Þ: ðD20Þ

By assuming m2(t) from Am(1), the Maxwell coefficients
become

Am 1ð Þ ¼ 1� e�
t

tm

	 


and

m2 ¼ m1
e�

t
tm

2� e�
t

tm

 !
: ðD21Þ

As a check, we can verify that shear time variations are
consistent with those expected for end-member models.
For example, for times approaching zero, shear moduli of
the layer and half-space are equal (m1 = m2). Alternatively,
for times approaching infinity, the shear modulus of the
half-space goes to zero (m2 = 0). The 2-D models of
Figures 3a–3b demonstrate this behavior.

Appendix E: Force Couples on a Regular Grid

[76] A dislocation in a fault plane is commonly repre-
sented by body force couples. In the case of a horizontal
strike-slip fault, a double-couple should be used to ensure
local balanced moment in the horizontal plane [Burridge
and Knopoff, 1964]. Here we describe the algorithm for
generating single- and double-couple body forces for a
segmented fault trace mapped onto a regular grid (Figure 1).
[77] Consider a grid with cell spacing Dx. The final

displacement and stress model cannot resolve features
smaller than the cell spacing, thus we approximate a fault
segment with a finite length L, oriented along the x axis, and
a finite thickness s � Dx as follows:

f x; yð Þ ¼ g xð Þh yð Þ; ðE1Þ

where the across-fault function h(y) is a Gaussian function:

h yð Þ ¼ 1

s
ffiffiffiffiffiffi
2p

p exp
y2

2s2

� �
: ðE2Þ

We represent a curved fault trace as a large number of
straight overlapping segments of the form

g xð Þ ¼

1

2
1� cos

p xþ 2Dxð Þ
4Dx

� �
�2Dx < x < 2Dx

1 2Dx < x < L� 2Dx

1

2
1� cos

p Lþ 2Dx� xð Þ
4Dx

� �
L� 2Dx < x < Lþ 2Dx;

8>>>>>>><
>>>>>>>:

ðE3Þ

where x is the distance from the start of the segment and L is
the segment length. The segments are arranged end-to-end
so that the sum of the overlapping cosine functions equals
one. The spatial variations in the force-couple are
constructed by taking the derivatives of the fault function.
The primary couple is parallel to the fault (x direction) and
corresponds to the fault-normal derivative

f1 x; yð Þ ¼ g xð Þ @h
@y

; ðE4Þ

where

@h

@y
¼ �y

s3
ffiffiffiffiffiffi
2p

p exp
y2

2s2

� �
: ðE5Þ

The secondary force couple is perpendicular to the fault
( y direction) and corresponds to the fault-parallel derivative

f2 x; yð Þ ¼ @g

@x
h yð Þ; ðE6Þ

where

@g

@x
¼

p
8Dx

sin
p xþ 2Dxð Þ

4Dx
�2Dx < x < 2Dx

1 2Dx < x < L� 2Dx

�p
8Dx

sin
p Lþ 2Dx� xð Þ

4Dx
L� 2Dx < x < Lþ 2Dx

8>>>>>><
>>>>>>:

:

ðE7Þ

A rotation matrix is used to rotate the force couple functions
to the proper orientation:

x

y

� �
¼ cos q � sin q

sin q cos q

� �
x0

y0

� �
; ðE8Þ

where q is the angle between the x axis and the fault trace
(q > 0 represents counterclockwise rotation).
[78] Three modes of displacement can be applied on each

fault segment: F1 is strike slip, F2 is dip slip, and F3 is
opening of the fault. Once the primary and secondary force
couple functions are computed and rotated into the fault
direction, they are multiplied by the strength of the dislo-
cation to form three grids corresponding to the F1, F2, and
F3 modes. These three force components must then be
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rotated into the Cartesian frame Fx, Fy, and Fz using the
following formulas:

Fx x; yð Þ

Fy x; yð Þ

Fz x; yð Þ

0
BBBB@

1
CCCCA ¼ f1 x; yð Þ

� cos q 0 sin q

sin q 0 cos q

0 1 0

0
BBBB@

1
CCCCA

F1

F2

F3

0
BBBB@

1
CCCCA: ðE9Þ

Balancing of the moment due to the horizontal strike-slip
force couple F1 requires a second force component given by

F2
x x; yð Þ

F2
y x; yð Þ

0
@

1
A ¼ f2 x; yð Þ

F1 sin q

F1 cos q

0
@

1
A: ðE10Þ

Note that this force couple only applies to the end of each
fault segment and the forces largely cancel where fault
segments abut as described in Burridge and Knopoff [1964].
The moment generated by the vertical dip-slip F2 and the
opening F3 of the fault will produce topography that will
balance the moment under the restoring force of gravity.
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