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S U M M A R Y
We have developed a data-driven spectral expansion inversion method to place bounds on
the downdip rupture depth of large megathrust earthquakes having good InSAR and GPS
coverage. This inverse theory approach is used to establish the set of models that are consistent
with the observations. In addition, the inverse theory method demonstrates that the spatial
resolution of the slip models depends on two factors, the spatial coverage and accuracy of
the surface deformation measurements, and the slip depth. Application of this method to the
2010 Mw 8.8 Maule Earthquake shows a slip maximum at 19 km depth tapering to zero at
∼40 km depth. In contrast, the continent–continent megathrust earthquakes of the Himalayas,
for example 2015 Mw 7.8 Gorkha Earthquake, shows a slip maximum at 9 km depth tapering to
zero at ∼18 km depth. The main question is why is the maximum slip depth of the continental
megathrust earthquake only 50 per cent of that observed in oceanic megathrust earthquakes.
To understand this difference, we have developed a simple 1-D heat conduction model that
includes the effects of uplift and surface erosion. The relatively low erosion rates above the
ocean megathrust results in a geotherm where the 450–600 ◦C transition is centred at ∼40 km
depth. In contrast, the relatively high average erosion rates in the Himalayas of ∼1 mm yr–1

results in a geotherm where the 450–600 ◦C transition is centred at ∼20 km. Based on these new
observations and models, we suggest that the effect of erosion rate on temperature explains the
difference in the maximum depth of the seismogenic zone between Chile and the Himalayas.
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1 I N T RO D U C T I O N

Over the past few decades, advances in space geodesy such as
Interferometric Synthetic Aperture Radar (InSAR) and global po-
sitioning system (GPS) have facilitated detailed mapping of sur-
face deformation. These high quality and regional datasets have
enabled scientists to build 3-D deformation fields for many large
earthquakes. Usually, the fault geometry can be reasonably approx-
imated from aftershocks, geophysical imaging and geological field
studies. Elastic models that relate slip at depth to surface deforma-
tion can then be constructed by discretizing this fault into small
patches before estimating the slip on each patch. While this method
is straightforward, it hardly provides an estimate of the spatial reso-
lution nor unbiased uncertainties associated with the slip model. It
is well known that the equations which relate slip at depth to surface
deformation contain an upward continuation term (Steketee 1958),
which exponentially attenuates the rupture signal at wavelengths
smaller than the depth, therefore making this inverse problem in-
herently non-unique (Parker 1994). This is true even if the data cov-

erage is complete and the data have no errors. The non-uniqueness
becomes evident in parametrized inversions when the discretized
patch size is smaller than the depth; the inversions are poorly con-
ditioned resulting in wild oscillations in slip distribution. In order
to stabilize the solution, smoothness regularization combined with
a non-negativity constraint is applied to the inversion, which acts as
a strong prior knowledge to the model (Jonsson et al. 2002; Simons
et al. 2002; Fialko 2004; Tarantola 2005). In some studies, a checker-
board test is used to illustrate the resolving power of the data (Fialko
2004; Tong et al. 2010). Tong et al. (2010) performed this test for
the Mw 8.8 2010 Maule earthquake and found the model can only
recover a 20-km checker up to about 35 km depth, but can recover
a 40-km checker to 60 km depth. These results are consistent with
the inverse relation between model resolvability and rupture depth.

For several recent megathrust earthquakes, surface deformation
has been well recorded and many studies have incorporated these
data into earthquake rupture inversions using the standard param-
eter estimation approach. Inversions for the 2010 Mw 8.8 Maule
earthquake (oceanic plate subducting) suggest a tapering of slip
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towards zero at ∼40 km depth (Tong et al. 2010; Lorito et al. 2011).
This depth is similar to many other oceanic subduction slip in-
versions [e.g. the 2011 Mw 9.0 Tohoku-oki (Simons et al. 2011;
Minson et al. 2014); 2004 Mw 9.2 Sumatra–Andaman (Ammon et
al. 2005; Lay et al. 2005; Chlieh et al. 2007)]. By contrast, in-
versions for the 2015 Mw 7.8 Nepal earthquake (continental plate
subducting) suggest a tapering of slip towards zero at less than 20 km
(Galetzka et al. 2015; Wang & Fialko 2015). This depth is consistent
with the maximum depth of strong interseismic coupling resolved
by geodetic models along the Himalayan front (Stevens & Avouac
2015). This difference raises two questions. First, is the difference
in downdip rupture limit well resolved by the observations? If it is
well resolved, what physical mechanisms may explain such a large
difference? This requires a real uncertainty estimate as well as an
analysis of resolving power for inversion models.

To address the first question, we adopt the approach of linear in-
verse theory (Gilbert 1971; Parker 1977). As noted by Parker (1977):
‘The quality that distinguishes inverse theory from the parameter
estimation problem of statistics is the unknowns are functions, not
merely a handful of real numbers. This means that the solution
contains in principle an infinite number of variables, and therefore
with real data the problem is as underdetermined as it can be.’ The
approach begins with the well-known Green’s functions relating
slip at depth on a prescribed fault plane to surface deformation.
Following the spectral expansion method, we then construct a set
of up to N orthonormal slip functions that span the set of N surface
observations. The solution and its uncertainty are constructed from
a finite number M ≤ N of these functions, or kernels, that match the
data to within their uncertainty. The low order kernels are generally
smoothest and well constrained by the data while the higher order
kernels have more oscillations and are more poorly constrained.
The solution is constructed from the well-resolved kernels. We use
this approach to provide bounds on the depth distribution of slip
during the Mw 8.8 Maule (oceanic) and Mw 7.8 Gorka (continental)
megathrust areas, and show that the factor-of-two difference in slip
depth is indeed well resolved by the geodetic data.

To address the second question, the pronounced difference in the
slip depth, we develop a simple 1-D thermal model that includes
the effects of vertical advection of heat due to erosion-induced
rebound (Royden 1993). We find that an erosion rate of 1 mm yr–1

decreases the depth of the 600 ◦C isotherm by a factor of two,
which can explain the relatively shallow rupture depth of the Gorka
earthquake.

2 T H E S P E C T R A L E X PA N S I O N
A P P ROA C H

Here we give a brief summary of the spectral expansion theory from
Parker (1977, 1994) as applied to static slip inversion. The theory
is originally from Gilbert (1971). The main difference between our
formulation and the original formulation is that our model is 2-D
vector slip (strike and dip) as a function of the two dimensions on
the fault surface m(x). Note that the fault does not need to be a
planar surface. The data are surface deformation sampled at a finite
number of points on the surface of the Earth. GPS can provide 3
components of deformation while InSAR provides 1 or 2 line of
sight components. Each component of each data point is di and has
an uncertainty σi . We use the elastic half-space Green’s function
(Okada 1985) to relate vector slip at depth to each component of
surface deformation. We note that Green’s functions for a more

complicated elastic structure could be used. The convolution of the
model and the Green’s function is given by

di =
∫

�

Gi (x) m (x) d�, (1)

where � represents integration over the entire fault plane. After
dividing both sides of eq. (1) by the uncertainty σi the equation can
be rewritten as

d ′
i =

∫
�

G ′
i (x) m (x) d�. (2)

Now the data d ′
i as well as the Green’s functions G ′

i are dimen-
sionless and the data have unit standard deviation. Following Parker
(1977) we form the Gram matrix �

�i j =
∫

�

G ′
i (x) G ′

j (x) d�. (3)

Thus, � is positive-definite and symmetric, and can be diagonalized
with an orthonormal matrix O of eigenvectors

OT�O = �, where � = diag{λ1, λ2, . . . , λN }
and λ1 ≥ λ2 ≥ λ3 ≥ . . . λN > 0, (4)

where λi are the eigenvalues; the full set of eigenvalues is called
the spectrum. It’s not difficult to show that

λi = Oi
T � Oi =

∑
j

O ji

∫
�

GGTd�Oi j

=
∫

�

∑
j

O ji GGT Oi j d�, (5)

where G is a column vector of normalized Green’s functions and
the Gram matrix � can be treated as a dyad matrix. We rewrite the
equation as following:

� =
∫

�

OTGGTO d�. (6)

Now consider the kernel functions defined by

ψi (x) = λi
− 1

2

∑
j

O ji G
′
j (x) . (7)

It can be easily verified from the eq. (5) that ψi (x) are an orthonor-
mal set∫

�

ψi (x) ψ j (x) d� = δi j . (8)

Therefore, we consider the expansion of the model m(x) in terms
of these kernels

m(x) =
∑

j

ai ψi (x) + ψ∗, (9)

where ψ∗ is the annihilator (i.e. models that produce no surface
deformation at the positions of the data points). The coefficients of
the expansion can be derived

ai =
∫

�

ψi (x) m (x) d�

=
∫
�

λi
− 1

2

∑
j

O ji G
′
j (x) m (x) d�

= λi
− 1

2

∑
j

O ji

∫
�

G ′
i (x) m (x) d�

= λi
− 1

2

∑
j

O ji d
′
j . (10)
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Figure 1. 2-D infinite fault test case. (a) Eigenvalues versus order, with the blue circle denoting the order selected for the step case (c) and blue star for the
Gaussian case (d) when using noisy data. (b) Some examples of orthonormal kernels versus depth. (c) Recovered slip versus depth plot for input slip being a
step function and (d) recovered slip versus depth plot for input slip being a Gaussian function. For (c) and (d), the black dashed lines represent the input slip,
blue lines are slip inverted using noisy data with magenta dash–dotted lines being the uncertainty bounds, light blue lines are the slip inverted using noise-free
data, transparent red and green lines are inverted slip using noise-free data with more kernels. The forward model and fitting can be found in Fig. S1.

Since all the d ′
j have unit variance and the matrix O is orthonormal,

the error estimates of ai are simply λi
−1/2 and ai are statistically

independent. When the inverse problem is handled with this ap-
proach, it is easy to isolate the parts that are better determined, that
is those have smaller error or larger eigenvalue.

3 A P P L I C AT I O N T O 2 - D A N D 3 - D
T E S T C A S E S

We first test this approach using an infinitely-long vertical strike-
slip fault. Two input slip distributions are used for testing. The first
is uniform slip (1 m) with depth between the surface and 12 km
(Fig. 1c, black dashed). The second is a Gaussian-shaped slip cen-
tred at 8 km depth (Fig. 1, black dashed). We then use the 2-D
half-space Green’s function (Cohen 1999) to forward generate sur-
face observations from –50 to 50 km distance with 200 m sampling
increment and add a random noise of 2 per cent of the maximum
shear deformation (Fialko 2004). Next, we normalize the Green’s
function, compute the Gram matrix analytically and decompose it
to get the eigenvalues (Fig. 1a) as well as the orthonormal kernels
(Fig. 1b). Note that the orthonormal kernels have oscillations as a
function of depth with more oscillations for higher kernel number.
After this step, we calculate the coefficient for each kernel and com-
bine them to get the inverted slip (Fig. 1c, blue line). The uncertainty
of the inverted slip can be acquired by propagating the error of each
coefficient to the model (Fig. 1c, magenta dash–dotted line).

An additional test is done to explore the recoverability by invert-
ing the synthetic data with no noise. The light blue line in Fig. 1(c)
shows the solution using the exact same number of kernels, while
the transparent red and green lines are solutions using more. It’s
obvious that with more kernels, the solution will get closer to the
step function we input, despite the fact that due to the upward con-
tinuation, a full recovery of the step function is not expected. Also,

the rapid reduction in the eigenvalue causes the error from the data
to be exponentially magnified when it comes to higher order. To
further examine this approach, we set a Gaussian input slip cen-
tring 8 km depth with the maximum slip being 1 m (Fig. 1d). The
conclusion remains the same. In both cases, the surface deforma-
tion is well fit with the selected kernels determined from the misfit

function χ 2 = 1
N

∑N
i = 1 (

di −d
pred
i

σi
)2 (Fig. S1). Note that from the

theory (Section 2), if the same fault geometry is determined, once
the locations of observations are set, every computation step will
be the same until the calculation of coefficients for the kernels. In
other words, both cases shown in Figs 1(c) and (d) are just different
recompositions of the kernels shown in Fig. 1(b), based on different
surface observations.

After considering the 2-D test, we expanded the formulation to
a 3-D test case. We use a 350-km-long 250-km-wide planar fault
with N30◦E strike and 15◦ dip towards east. The input dip-slip is
a Gaussian function shown in Fig. 2(a), with the corresponding
moment magnitude being 8.0. Then we generate a forward model
using the half-space Green’s function (Okada 1985) and project the
vector surface deformation into descending and ascending line-of-
sight (LOS) directions to simulate the InSAR observations. Random
noise (2 per cent of maximum amplitude) (Fialko 2004) is added
and then the data are down sampled with a quad-tree algorithm
(Jonsson et al. 2002) based on the curvature of the deformation
field. Due to the complexity of the 3-D half-space Green’s function
(Okada 1985), the computation of the Gram matrix is done with
numerical integration for both strike and dip slip. We then decom-
pose the Gram matrix to recover the eigenvalues and orthonormal
kernels (Figs S3i and S6). We found the 3-D case has a much slower
fall-off in misfit with increasing number of kernel functions than
the 2-D case. To determine how many kernels to use, we examine
the misfit function (Fig. 2c) and chose the smallest number with
reasonable misfit reduction (e.g. 100 kernels), in which case, more
kernels will result in an explosion in model’s uncertainty but no
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Figure 2. 3-D test case. (a) Input dip slip with positive defined as hanging wall moving up-dip. The black dashed line is the fault trace. (b) Cumulative dip slip
p(z) = ∫ L

0 m(x, z)dx (Simons et al. 2002) versus depth plot with black dashed line being the input dip slip, blue line representing the inverted dip slip and
magenta dash-dotted lines denoting the uncertainty. (c) Misfit versus number of kernels, with the red dot being the order selected. (d) Inverted dip slip and (f)
inverted strike slip with hanging wall moving north-eastward defined as positive. Resolving wavelength for dip slip (e) and strike slip (g) constructed by the
algorithm shown in Fig. S2. Data fitting and eigenvalues can be found in Fig. S3.
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Figure 3. Inverted slip for the 2010 Mw 8.8 Maule Earthquake. (a) Inverted dip slip and (b) inverted strike slip, with same positivity definition as Figs 2(d)
and (f). The black dashed line in (a) represents the fault trace. Resolving wavelength for dip slip (c) and strike slip (d). (e) Misfit versus the number of kernels
used. The data fitting, uncertainty estimate and eigenvalues can be found in Fig. S4.

significant improvement on data fitting. While the along-strike cu-
mulative dip slip shows a good fit to the input (Fig. 2b) with the
recovered moment magnitude being 7.99, a small component of
strike slip was also ‘recovered’, potentially due to incomplete cov-
erage from down-sampled data and the noise we added. Besides, we
also discovered some short wavelength undulations in the inverted
slip, which we believe is due to the nature of this decomposition
method.

To further understand the spatial resolution of the inversion, we
developed a technique to qualitatively represent the resolving power
of the slip model (Fig. S2). For each kernel used in the construction
of the model, we pick out the peaks and troughs, together with the
corners and sides, to create a set of nodes. Next, we apply Delaunay
triangulation (Delaunay 1934) to these nodes and set their values
to the average of the distances between each node and its adjacent
nodes. Then we fit these distance measures at each vertex using
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Figure 4. Inverted slip for the 2015 Mw 7.8 Gorkha Earthquake. (a) Inverted dip slip with same positivity definition as Fig. 2(d) and (b) is the inverted strike
slip with positive defined as the hanging wall moving north-westward. The black dashed line in (a) represents the fault trace. Resolving wavelength for dip slip
(c) and strike slip (d). (e) Misfit function versus the number of kernels used. The data fitting, uncertainty estimate and eigenvalues can be found in Fig. S5.

splines in tension (Smith & Wessel 1990) and filter the result to get
the resolving wavelength map for the kernel. When applying this to
all the kernels used in the spectral expansion inversion, the minimum
value among all the kernels at every position on the fault plane is
considered as the resolving wavelength for the model (Figs 2e and
g). We also performed further tests for dip slip and a mixture of
dip and strike slip scenarios, the results of which are presented in
supplementary information (Figs S7 and S8).

The two test cases reveal some interesting features of this spectral
expansion approach. First, the eigenvalues derived from the Gram
matrix decrease slower in the 3-D case than the 2-D case. We believe
this is because the data in the 3-D case requires extra constraints for
one more dimension, thus more eigenvalues are needed to achieve
the same level of trade-offs. Second, the resolving power of the
model depends a lot on data sampling. It’s obvious, even from the
equations in Section 2, that the shapes of kernels are completely
determined by the model geometry and distribution of the data
samples. The derived resolving wavelength could also act as a guide
for the digitization of parameter estimation models. Third, the 2-D
case shows an increase in uncertainty at shallower depth since it has
complete surface coverage. The 3-D case shows a similar feature,
but suddenly the uncertainty becomes smaller at the surface, which
we relate to the lack of near-fault data. The truth is that the data
can never be dense enough when it comes close to the fault, as the
Green’s function will change dramatically over a short distance.
This inversion approach relies heavily on the similarity of Green’s
function between data points, that is the redundancy of data. Thus,

in this case, the quad-tree algorithm may not be optimal for down
sampling, as the redundancy of data is dependent on fault depth.
Fourth, although the computation is defined as the inner product of
the Green’ functions over the model space, that is how similar their
Green’s functions are, the Gram matrix could potentially represent
the covariance (after scaling by the data’s uncertainty) between data
points, if we assume the data having zero mean. In other words, if
the measurement of one data point changes away from zero due to
an earthquake, the measurement of a nearby data point may also
change correspondingly. Finally, the fault could be in any shape as
long as the integration shown in eq. (3) can be done properly, which
gives a strong adaptability to this approach.

4 A P P L I C AT I O N T O T H E 2 0 1 0 M AU L E
A N D T H E 2 0 1 5 G O R K H A
E A RT H Q UA K E S

We first use this spectral expansion approach to model the slip
for the Mw 8.8 Maule, Chile earthquake. This earthquake was a
megathrust event that ruptured a mature seismic gap (Moreno et al.
2010) and generated a strong tsunami throughout the Pacific Ocean
(Fritz et al. 2011). Previous study shows coseismic rupture ex-
tending downdip to a depth of ∼40 km, which correlates well with
interseismic coupling along the Andean subduction zone in south-
central Chile (Lorito et al. 2011; Métois et al. 2012). Here we apply
the spectral expansion approach to the processed InSAR and GPS
data presented in (Tong et al. 2010) and analyse the uncertainty
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Figure 5. Cumulative dip slip versus depth plots for (a) the 2010 Mw 8.8 Maule Earthquake and (b) is the 2015 Mw 7.8 Gorkha Earthquake, with blue lines
denoting the cumulative dip slip and magenta dash-dotted lines representing the uncertainty bounds.

Figure 6. Temperature versus depth for 1-D heat conduction model. (a) Models with different accretion/erosion rate. (b) Models with different upper crust
heat generation rate. (c) Models with different mantle temperature.

and resolving power of the model. We use the same fault geome-
try as in their study, with the fault plane extending 680 km along
strike N16.5◦E and 250 km downdip 15◦ towards east. From the
misfit function analysis (Fig. 3e), we determined that 150 kernels
were needed to represent the coseismic slip. The solution (Figs 3a
and b) shows a total slip moment corresponding to moment magni-
tude 8.79 assuming an average shear modulus of 40 GPa, with the
thrust component being 1.86 × 1022 Nm and the strike component
being 5.85 × 1021 Nm. This is close to the seismic moment re-
ported by (NEIC 2010) (Mw 8.8). From the resolving wavelength
analysis (Figs 3c and d), the model has the best resolution at inter-
mediate depth (20–40 km), with resolution decreasing dramatically
outside of this range. More interestingly, at shallower depth, due to
the lack of offshore data, the resolution is actually worse than at
deeper depth. This brings into question the very small uncertainty
estimates near the fault surface. Are we so sure the uncertainty of
the slip estimate is almost zero close to fault trace? The answer is
yes, with a sacrifice in resolution, the statistical precision is almost

intrinsically guaranteed. The cumulative dip slip (Fig. 5a) increases
from 0 to 20 km depth and decreases to zero at roughly 45 km
depth. This is in good agreement with previous studies and the un-
certainty of our model together with the resolving power analysis
show that the reduction in slip amplitudes is well determined by
observations.

We then reinvestigate the 2015 Mw 7.8 Gorkha earthquake in
Nepal. This earthquake took place on a tectonic boundary due to
the Indian-Eurasian collision and ruptured 140 km on the Main
Himalayan Fault (Galetzka et al. 2015). In contrast to megathrust
events at subduction zones, previous studies all show a very limited
downdip rupture extent with co-seismic slip typically terminating
between 15 and 25 km depth (Wang & Fialko 2015). Here we apply
the spectral expansion inversion to the InSAR data from (Galetzka
et al. 2015; Lindsey et al. 2015) and GPS data from (Galetzka
et al. 2015). We down-sample the InSAR data using the quad-
tree algorithm with increased sampling density closer to the fault in
order to increase the resolution at shallow depth. The sampling stops
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Figure 7. (a) Residual free-air gravity anomaly at the 2010 Chile Mw 8.8 earthquake region with grey dashed line denotes the trench axis and the black
dashed line represents the TPFR. Grey pluses mark GCMT thrust events with Mw < 6.5. GCMT events with Mw ≥ 6.5 are plotted with beach ball, scaled for
magnitude, coloured for depth. (b) Same as (a) with grey solid contours are the inverted slip pattern with each line representing 3 m slip. (c) Fraction of Plate
Convergence from (Moreno et al. 2010). The grey dashed line and black dashed line are the same as in (a) and (b).

20 km away from fault in order to maintain numerical stability and
save computation time. We then combine the InSAR and GPS data
to perform the spectral expansion inversion. The model is created
following the main frontal thrust geometry from (Ader et al. 2012),
with the fault plane extending 200 km along strike N71.5◦W and
150 km along dip 7◦ towards north (Wang & Fialko 2015). By
examining the misfit function, we determined that 250 kernels were
needed to represent the coseismic slip (Fig. 4e). The estimated
total moment for the coseismic slip (Figs 4a and b) is 6.36 ×
1021 Nm, with the corresponding moment magnitude being 7.80,
assuming an average shear modulus of 30 GPa, which agrees with
the seismic moment reported by (NEIC 2015) (Mw 7.8). From the
resolving wavelength analysis (Figs 4c and d), the resolving power
generally decays with depth except in areas with denser samples
due to the quad-tree sampling. The cumulative dip slip with depth
plot (Fig. 5b) shows slip rapidly increasing at about 7 km depth,
reaches its maximum around 10 km, and then decreases towards
zero gradually. The slip versus depth profile is in agreement with
the previous studies (Wang & Fialko 2015). From the uncertainty
estimates and the resolving power analysis, this decay is also well
resolved by the data.

For these two cases, the InSAR data’s uncertainty is taken from
previous studies, with 10 cm for all InSAR data in the Maule
case (Tong et al. 2010) and 2.3, 5.4 and 4.1 cm for track 47,

48 and 157 in the Nepal case (Wang & Fialko 2015). One in-
teresting feature from the spectral expansion is that the eigen-
values computed for the Maule case (Fig. S4i) decreases faster
than for the Nepal case (Fig. S5i), potentially because the Nepal
earthquake has a shallower dipping angle or more data close to
trench.

5 D I S C U S S I O N S

5.1 The influence of erosion rate on thermal structure

The inversion approach we developed in this study confirms that
the contrasting downdip rupture extents of the two earthquakes are
indeed well determined by observations. This raises the next ques-
tion: Why is the downdip rupture extent of Himalayan megathrust
earthquakes (15–20 km) a factor of 2 shallower than the downdip
limit (>40 km) of megathrust earthquakes in oceanic subduction
zones? Temperature exerts a strong influence on both dehydration
reactions and deformation mechanisms. In particular, the transition
from friction to intracrystalline plasticity as the dominant deforma-
tion mechanism in quartzofeldspathic rocks occurs at temperatures
of 325–350 ◦C, and is often proposed to define the upper temper-
ature bound for seismic behaviour in crustal rocks (Hyndman &
Wang 1993, 1995; Hyndman et al. 1997; Oleskevich et al. 1999). It
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Figure 8. Residual topography for the 2015 Mw 7.8 Nepal earthquake region. The grey dashed line denotes the Main Frontal Thrust (MFT). The grey lines
are the locking contours from (Stevens & Avouac 2015). The grey lines in the subplot at upper-right corner are 1-m slip contours. The bottom-left plot is the
average elevation at this region.

has been also proposed that earthquake ruptures initiated below this
temperature bound may propagate with decreasing slip to where the
temperature is 450 ◦C (Hyndman et al. 1997; Hyndman 2007).

Due to the existence of subduction, the temperature is generally
higher on the side of the overriding plate, which is roughly around
600 ◦C (Klingelhoefer et al. 2010). The rapid subduction of cooler
oceanic lithosphere will depress the isotherms on the megathrust
interface, but this can account for only a 5 km deepening when sub-
duction rate changes from 2 to 4 cm yr–1 (Klingelhoefer et al. 2010).
To further understand what is causing the factor of 2 difference be-
tween the Himalayian rupture depth and the Maule rupture depth,
we follow Royden (1993) and developed a 1-D heat conduction
model that accounts for the effect of erosion rate (Appendix). We
assume that the surface is at a quasi-steady stage where the uplift
from accretion and rebound is balanced by the effect of erosion.
We then adopt the parameters in Royden (1993) who assumes the
erosion rate to be 1 mm yr–1 and vary the remaining variables to
calculate the corresponding temperature profiles (Fig. 6). From our
analysis, both the heat production in the upper crust and the mantle
temperature has little effect on depth of the 600 ◦C isotherm, while
the erosion rate influences the temperature profile significantly. This
can be understood by considering the effects of accretion or ero-
sion/rebound; the hotter materials are directly brought up towards
the surface, which is far more efficient than heat conduction. Recent
studies show that in the region of the Gorkha earthquake, the surface
erosion rate increases from about 0.5 mm yr–1 in the up-dip region
to 3.5 mm yr–1 downdip (Whipple et al. 2016), while for south-
central Chile, this number is quite small (<0.3 mm yr–1) (Aguilar
et al. 2011; Carretier et al. 2013). Fig. 6(a) shows that an average

1 mm yr–1 erosion rate is sufficient to bring the 600 ◦C isotherm
from a depth of 40–17 km, which is consistent with our findings
from spectral expansion inversion.

5.2 Correlations between forearc ridges and the downdip
limit of the seismogenic zone

Bassett & Watts (2015a,b) have developed a spectral averag-
ing method of suppressing the large-amplitude, long-wavelength,
trench-normal topographic and gravimetric expression of subduc-
tion zones. The global application of this technique revealed that
in at-least five circum-Pacific subduction zones with a history of
large megathrust earthquakes, the downdip limit of the seismogenic
zone was approximately correlated with the location of a trench-
parallel forearc ridge (TPFR). The longest TPFR parallels the coast-
line of Chile for >2000 km and is coincident with the Chilean
coastal Cordillera. As shown in Fig. 7, the TPFR in southern Chile
is well correlated with the maximum depth of earthquakes with
Global Centroid Moment Tensors (GCMT; Dziewonski et al. 1981;
Ekström et al. 2012) consistent with megathrust slip, the maxi-
mum depth of co-seismic slip in the 2010 Mw 8.8 Maule earthquake
(Tong et al. 2010; Delouis et al. 2010; this study), and the max-
imum depth of interseismic coupling as constrained by campaign
GPS measurements (Moreno et al. 2010). A similar correlation has
been recognized in northern Chile (Béjar-Pizarro et al. 2013).

To investigate whether a similar relation is observed for the Gorka
earthquake, we have applied this technique of spectral averaging
to calculate residual topographic anomalies along the Himalayas.
We have analysed the global SRTM15 topographic grid, which has
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a resolution of 15 arcsec (roughly 500 m). Residual topographic
anomalies along the Himalayas are shown in Fig. 8. The Gorka
earthquake occurred immediately up-dip of an elongated, strike-
parallel region of positive residual topographic anomalies, which
correlates remarkably well with the 3500 m elevation contour of
the Himalayas (Avouac 2003; Stevens & Avouac 2015). This ele-
vated band may be analogous to the TPFR previously observed in
oceanic subduction zones. Black contours show the distribution of
interseismic coupling as constrained by campaign GPS measure-
ments (Stevens & Avouac 2015). It is intriguing that we observe a
similar spatial association between the downdip transition from an
interseismically locked to creeping megathrust, with the elevated
residual topography of the high Himalayas.

In subduction zones, the broad pattern of interseismic deforma-
tion can be modelled by placing an edge dislocation at the downdip
end of the locked fault with its Burger’s vector parallel to fault
dip (Savage 1983). This model predicts a broad interseismic subsi-
dence over the majority of the locked fault, with interseismic uplift
located near the downdip limit of locking. Over many earthquake
cycles, the incomplete recovery of interseismic elastic deforma-
tion by earthquakes and post-seismic slip may lead to permanent
deformation of the forearc that spatially mirrors the sign of in-
terseismic deformation. This model has been proposed to explain
long-term coastal uplift in oceanic subduction zones in Cascadia
(Kelsey et al. 1994) and Mexico (Ramirez-Herrera et al. 2004) and
we suggest unrecovered interseismic deformation may also be con-
tributing to the elevation and growth of the high Himalaya in eastern
Nepal, which is in agreement with previous studies (Meade 2010).

6 C O N C LU S I O N S

In this study, we developed and tested a data-driven spectral ex-
pansion approach that possess the advantages of (1) mathematical
robustness, (2) smoothness and stableness without regularization,
(3) capability of adopting complex fault surface, (4) giving real
uncertainty estimates and (5) providing resolving power analysis.
With this approach, we confirmed that the downdip ruptures of the
2010 Mw 8.8 Maule earthquake and the 2015 Mw 7.8 Gorkha earth-
quake are well resolved by the data. The Maule earthquake rupture
terminates around 45 km depth and the Gorkha earthquake rupture
stops shallower than 20 km. Both these depths are well correlated
with the location of trench-parallel forearc ridges, which may re-
flect unrecovered interseismic elastic deformation. To understand
the difference in maximum rupture depth between the two cases,
we constructed 1-D thermal conduction models with different ero-
sion rate, upper-crust heat production and mantle temperature. By
comparing different models, we conclude that the erosion rate has
a major influence on the downdip rupture limit.
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Figure S1. (a) Comparison between surface deformation derived
from the input slip (red dots, noise added) and inverted slip (7
kernels, black line) corresponding to Fig. 2(c). (b) Misfit func-
tion versus the number of kernels used for Fig. 2(c). (c) Compar-
ison between surface deformation corresponding to Fig. 2(d) (11
kernels). (d) Misfit function plot versus number of kernels used
for Fig. 2(d).
Figure S2. (a) An example 2-D kernel for the 2010 Maule Earth-
quake, with black circles denoting the peaks and troughs of the ker-
nel. (b) Delaunay triangulation for the nodes (circles) in (a) (adding
8 nodes at corners and middle of sides, value of each node is the
average distance from the node to its adjacent nodes), with colour
representing the average from the triangle’s three nodes. (c) Map
generated applying a surface technique and filtering to the nodes in
(b).
Figure S3. Plots (a), (b) and (c) are the subsampled data, forwarded
model, and misfit for the simulated noisy ascending data. Plots (d),
(e) and (f) are the subsampled data, forwarded model, and misfit for
the simulated noisy descending data. (g) Uncertainty map for dip
slip in Fig. 3(d). (h) Uncertainty map for strike slip in Fig. 3(f). (i)
Eigenvalues versus order.
Figure S4. Plots (a), (b) and (c) are the subsampled data, forwarded
model, and misfit for the ascending data for the 2010 Mw 8.8 Maule
Earthquake. Plots (d), (e) and (f) are the subsampled data, forwarded
model, and misfit for the descending data. (g) Uncertainty map for
dip slip in Fig. 4a. (h) Uncertainty map for strike slip in Fig. 4b. (i)
Eigenvalues versus order.
Figure S5. Plots (a), (b) and (c) are the subsampled data, forwarded
model, and misfit for the data from ALOS-2 ascending track 157
for the 2015 Mw 7.8 Nepal earthquake. Plots (d), (e) and (f) are
the subsampled data, forwarded model, and misfit for the data from
ALOS-2 descending track 47. Plots (g), (h) and (i) are the subsam-
pled data, forwarded model, and misfit for the data from ALOS-2
descending track 48. (j) Uncertainty map for dip slip in Fig. 5a.
(k) is the uncertainty map for strike slip in Fig. 5b. (l) Eigenvalues
versus order.
Figure S6. Some examples of kernels for the 3-D test. The upper
row shows the dip slip kernels and the lower row shows the strike
slip kernels. The wavelength of the kernel decreases as the order
increases.
Figure S7. 3-D strike-slip test case. (a) Input strikeslip with the
black dashed line denoting the fault trace. (b) Cumulative strike
slip p(z) = ∫ L

0 m(x, z)dx versus depthwith black dashed line being
the input strike slip, blue line representing the inverted strike slip,
and magenta dash-dot lines denoting the uncertainty. (c) Misfit
versus order with the red dot being the order selected. (d) Inverted
dip slip and (f) inverted strike slip. Resolving wavelength for dip
slip (e) and strike slip (g) constructed by the algorithm shown in
Fig. S2.
Figure S8. 3-D mixture of dip and strike sliptest case. (a) Input
strike and dip slip (same amplitude) with the black dashed line
denoting the fault trace. (b) Cumulative slip p(z) = ∫ L

0 m(x, z)dx
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versus depth plot with black dashed line being the input dip/strike
slip, blue line representing the inverted dip slip and cyan dash-dot
lines denoting the uncertainty, red line representing the inverted
strike slip, and magenta dash-dot lines denoting the uncertainty. (c)
Misfit versus order with the red dot being the order selected. (d)
Inverted dip slip and (f) inverted strike slip. Resolving wavelength
for dip slip (e) and strike slip (g) constructed by the algorithm shown
in Fig. S2.
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A P P E N D I X : D E R I VAT I O N O F T H E 1 - D
H E AT C O N D U C T I O N M O D E L W I T H
A C C R E T I O N / E RO S I O N

Following (Royden 1993), we simplified and modified the heater
conduction equation as follows, assuming the accretion and erosion
rates are in balance.

d2T

dz2
+ v

α

dT

dz
+ A0

K
e−z/h = 0,

where T is the temperature, z is the depth, v is the accretion
rate, α is the thermal diffusivity, A0 is the heat production rate
at the surface, K is the thermal conductivity and h is the char-
acteristic decaying depth for heat production. We simplify the
equation a little more by substituting some of the variables as
follows:

d2T

dz2
+ a

dT

dz
+ b e−cz = 0

Then further simplify the equation form a 2nd order ODE to a
1st order ODE by letting dT/dz = y. Then we have the equation
as

dy

dz
+ ay + b e−cz = 0

As for the type of 1st order ODE like y′ + P(x)y = Q(x) , the
general solution is

y = e− ∫ x
x0

P(t)dt
∫

Q (x) e
∫ x

x0
P(t)dt dx .

Thus, we have the solution for y as

y = − b

a − c

(
e−cz + C1e−az

)

Substitute y with dT/dz and solve the ODE, we’ll get

T = b

c (a − c)
e−cz + C1

b

a (a − c)
e−az + C2

Consider the boundary condition

z = 0, T = T0

z = H, T = Tm

We can get the coefficients

C1 = −
(

Tm
a (a − c)

b
+ a

c

(
1 − e−cH

)) / (
1 − e−aH

)

C2 =
(

Tm + b

c (a − c)

(
e−aH − e−cH

)) / (
1 − e−aH

)
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