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Abstract A major challenge for understanding the physics of shallow fault creep has been to observe and
model the long-term effect of stress changes on creep rate. Here we investigate the surface creep along the
southern San Andreas fault (SSAF) using data from interferometric synthetic aperture radar spanning over
25 years (ERS 1992–1999, ENVISAT 2003–2010, and Sentinel-1 2014–present). The main result of this
analysis is that the average surface creep rate increased after the Landers event and then decreased by a
factor of 2–7 over the past few decades. We consider quasi-static and dynamic Coulomb stress changes on
the SSAF due to these three major events. From our analysis, the elevated creep rates after the Landers can
only be explained by static stress changes, indicating that even in the presence of dynamically triggered
creep, static stress changes may have a long-lasting effect on SSAF creep rates.

Plain Language Summary There are two significant conclusions from this study. First, we analyzed
25 years of InSAR measurements over the Southern San Andreas Fault system to document a major increase
in the average creep rate following the 1992 Mw 7.3 Landers Earthquake which is then followed by creep
rate reductions after the 1999 Mw 7.1 Hector Mine Earthquake and the 2010 Mw 7.2 El Major Cucapah
Earthquake. Second, we attribute all these creep rate changes to the Coulomb stress variations from these
three major Earthquakes. The dynamic Coulomb stress changes are similar for all three events, contributing
to triggered creep on the SSAF. In contrast, the static Coulomb stress changes on the SSAF are positive
after the Landers and negative after the Hector Mine and El Major Cucapah, coinciding with the higher
average creep rate after the Landers and lower rates after the other two events. An implication of this study is
that small but steady Coulomb stress changes have a larger impact on shallow creep than the larger
dynamic stress changes associated with passing seismic waves. These results illuminate the significance of
time scale-dependent complexity of shallow fault creep and how these behaviors are communicated by
stress perturbations from regional earthquakes.

1. Introduction

Shallow fault creep is an aseismic faulting phenomenon observed on several active strike-slip faults
(Bürgmann et al., 2000; Funning et al., 2007; Harris, 2017; Kaneko et al., 2013; Steinbrugge et al., 1960). The
stable sliding of fault creep is generally governed by velocity-strengthening frictional properties, which is
supported by both theoretical (Dieterich, 1978; Scholz, 1998; Tse & Rice, 1986) and experimental studies
(Blanpied et al., 1995; Marone et al., 1991). Creep is driven by postseismic or interseismic stressing and can
be continuous or episodic (Wesson, 1988). Creep rate is often observed to be high immediately following
an earthquake and then diminishes with time after a few decades (Cakir et al., 2005; Wei et al., 2009).
Triggered surface creep is commonly associated with dynamic or static stress changes from large nearby
earthquakes and can be as large as a couple of centimeters (Behr et al., 1997; Kostić et al., 2014;
Lienkaemper et al., 1997; Stein et al., 1992; Williams et al., 1988). Shallow creep also occurs during interseismic
periods when there is no significant triggering, as a combination of steady creep punctuated by irregular
creep events (Bilham et al., 2004).

Creep can be measured using various tools that sample differing space and time scales. Geologists can
determine the average creep rate of a fault by measuring offsets of natural and man-made structures and
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dating the duration of the creep period (Sieh & Williams, 1990). Creepmeters are highly accurate and provide
a continuous record of creep but are spatially limited to a few meters on either side of a fault trace (Bilham
et al., 2004). Alignment arrays can sample farther from the fault and thus capture more distributed shallow
creep or creep on multiple fault traces, but their temporal resolution depends on how often the arrays are
resurveyed (Louie et al., 1985). Interferometric synthetic aperture radar (InSAR) can provide a more
complete mapping of distributed creep but is susceptible to atmospheric noises (Lyons & Sandwell, 2003).
Thus, when examining InSAR, stacking or time series analysis is needed to resolve low creep rates less than
~5 mm/year, and the temporal resolution is usually limited by the cadence of SAR acquisitions.

The reported creep rates along the southern San Andreas fault (SSAF; Figure 1) are somewhat variable
depending on the location as well as the spatial and temporal scales of the observations (Table 1). Over
the past 300 years, the average geologic creep rates near Indio and the Salton Sea are estimated to be
2–4 mm/year (Sieh & Williams, 1990). Creep in the same region for the time period of 1970 to 1984, derived
from alignment arrays and creepmeters, is generally less than 2 mm/year (Louie et al., 1985). Similar creep-
meter rates were found for the time period 1968–1979 (Bilham &Williams, 1985). More recent ERS InSARmea-
surements of creep rates for the time period between the 1992 Landers and 1999 Hector Mine earthquakes
are generally significantly higher (Lyons & Sandwell, 2003; 0–6 mm/year from Painted Canyon [PC] to Box
Canyon [BX], 15–20 mm/year from North Shore [NS] to Corvina Beach [CV]). The mismatch among these

Figure 1. Southern San Andreas fault region. Creep rate is estimated at PC, BX, NS, CV, and BC. Outset map shows
epicentral locations of the last three major earthquakes of the southern San Andreas fault region: 1992 Mw 7.3 Landers,
1999 Mw 7.1 Hector Mine, and 2010 Mw 7.2 El Major-Cucapah. PC = Painted Canyon; BX = Box Canyon; NS = North
Shore; CV = Corvina Beach; BC = Bat Caves.
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higher modern values from InSAR observations and the prior lower values could be errors caused by scaling
the single line of sight (LOS) measurements from ERS into horizontal strike-slip motion without accounting
for vertical signals across the fault (Sylvester et al., 1993). A more recent InSAR analysis (Lindsey et al.,
2014) using two look directions of ENVISAT data spanning 2003 to 2010 showed smaller creep rates than
found in the ERS study (i.e., at the five locations shown in Figure 1, PC = 2.7 mm/year, BX = 2.2 mm/year,
NS = 2.6 mm/year, CV = 4.5 mm/year, and Bat Caves (BC) = 3.0 mm/year). Moreover, these values agree
with creepmeter measurements (Bilham et al., 2004) over the same time period except for NS, where the
surface creep is distributed over 1.5 km across the fault. Similar estimates of 3–5 mm/year were deduced
by studies using only one look direction of ALOS-1 data spanning between 2006 and 2010 (Tong et al.,
2013). The discrepancies among these studies raise two questions. First, are the creep rates really changing
over decadal time scales? Second, if so, what are the possible physical mechanisms that could explain
this change?

To address the first question, we reprocessed InSAR data from five satellites (ERS-1/2, ENVISAT, Sentinel-1A/B)
that cover the SSAF area with a total observational period spanning over 25 years. We selected interfero-
grams that do not span the times of the nearby major earthquakes (e.g., Landers, Hector Mine, and El
Major-Cucapah [EMC]), thus the estimated surface creep rate should not have a significant triggered compo-
nent. We then extracted creep rate profiles along the SSAF trace and computed the fault parallel component
either by combining measurements from two radar look directions or calibrating the measurement from one
radar look direction using leveling data (Sylvester et al., 1993). The Sentinel-1 analysis (2014–present) pro-
vides a third decade of creep rate measurements to compare with the ERS (1990s) and ENVISAT (2000s) dec-
ades (supporting information Figure S1); surprisingly, we find that the present-day creep rates are lower than
all the previous studies discussed above and thus confirm that temporal variations are real. To begin to
explain these temporal variations in creep rate, we calculate Coulomb stress changes on the SSAF due to
regional large earthquake events using detailed source models (Xu et al., 2016) and explore possible expla-
nations for observations in models of stress interactions on friction-controlled faults.

2. InSAR Velocity Analyses

The InSAR processing and creep rate estimation was done using GMTSAR (Sandwell et al., 2011; Wessel et al.,
2013) and largely followed workflows of Lindsey et al. (2014) and Xu et al. (2017; Text S1). The interferograms
were Gaussian filtered at 100-m wavelength and then unwrapped with SNAPHU (Chen & Zebker, 2002).
Tropospheric error was reduced by stacking (Fialko, 2006; Peltzer et al., 2001) combined with an elevation-
dependent correction (Elliott et al., 2008). Residual long-wavelength errors were corrected using a GPS velo-
city model (Sandwell & Wessel, 2016; Tong et al., 2013; Wei et al., 2010). When multiple look directions were
available, we decomposed the LOS velocities into vertical (Figure S4) and fault parallel (Figure 2, top panel)
directions. Creep rate and uncertainty were estimated by linearly regressing the data in 2- (fault-perpendicu-
lar) by 4-km (fault-parallel) boxes (Figure 2, top panel). Since the ERS data have only one look direction, we

Table 1
Creep Rate Estimates (mm/year)

Time span PC BX NS CV BC

Sieh and Williams (1990) Past 300 years 2–4 2–4 - 4a 4b

Louie et al. (1985) ~1970–1984 2.0 3.1 0.08 0.7 1–2
Lyons and Sandwell (2003)c 1992/08–1999/06 0–6 0–6 15–20 15–20 -
Tong et al. (2013)d 2006/06–2010/12 4–5 3–5 3–5 4–5 0
Lindsey et al. (2014) 2003/06–2010/10 2.7 2.2 2.6 4.5 3.0
ERS (this study) 1992/08–1999/06 2.6 3.7 1.9 7.5 3.3
ENVISAT (this study) 2003/06–2010/03 2.4 2.0 1.0 4.2 2.4
Sentinel-1 (this study) 2014/11–present 1.7 0.4 0.0 1.6 1.9

Note. PC = Painted Canyon; BX = Box Canyon; NS = North Shore; CV = Corvina Beach; BC = Bat Caves.
aAverage creepmeter rate at Mecca Beach 2-km north to BC from 1981 to1988 is ~4 mm/year. bAverage creep rate at
Ferrum 4-km north to BC for 297 years is 4.0 ± 1.0 mm/year. cThese values are visual estimates from single look direc-
tion, fault-crossing profiles and include signal from deep slip. dThese values were estimated from a single look
direction.
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Figure 2. Line of sight velocity and creep rate. (upper) Fault-parallel creep rate where red circles are ERS-creep velocities
corrected for vertical deformation (uncorrected in parentheses). The creep rate uncertainties are computed via linear
regression on the interferometric synthetic aperture radar profiles and then propagated through decomposition. (lower)
Interferometric synthetic aperture radar line of sight velocity with red toward satellite. The dashed line is the Coachella
Canal and arrows show satellite flight and look directions. PC = Painted Canyon; BX = Box Canyon; NS = North Shore;
CV = Corvina Beach; BC = Bat Caves.
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first projected the vertical leveling measurements that are available at five positions (PC, BX, NS, CV, and BC)
along this segment (Figures S2 and S4; Sylvester et al., 1993) into the descending LOS direction. Then we
subtracted these from the InSARmeasurements (Figure S3) and projected the results back to the fault-parallel
direction.

3. Temporal Variations in Creep Rate

We observe (Figure 2) a major decrease in creep rate by a factor of about 2 to 7 between the ERS time frame
and the present (Sentinel time frame). The smallest reduction was at PC where creep rate was 2.6 mm/year
during the ERS time frame, 2.4 mm/year during the ENVISAT time frame, and 1.7 mm/year today. CV had
the largest creep rate reduction from 7.5 (ERS) to 4.2 (ENVISAT) to 1.6 mm/year (Sentinel) today. The BX creep
rates varied from 3.7 to 2.0 to 0.4 mm/year. The most important observation comes from Sentinel-1, where
we see very little to almost no long-term average creep today on the SSAF.

This reanalysis of the ENVISAT data agrees well with the analysis of Lindsey et al. (2014); small differences can
be attributed to the omission of interferograms that span the 2010 EMC earthquake. The reanalysis of the ERS
data yields generally lower LOS creep rates (Figure 2) than the Lyons and Sandwell (2003) study which did not
account for vertical motions across the fault. The largest difference is at NS where the vertical velocity from
the leveling data (Sylvester et al., 1993) reduces the creep rate from 13.1 to about 2 mm/year (Figure 2, top
panel). The other adjustments are significantly smaller. One possible explanation for this large vertical
velocity at NS is that it represents tectonic motion due to the more westerly strike of this segment
(Lindsey et al., 2014). A second possible explanation is that groundwater leaking from an unlined section
of the Coachella Valley Canal (dashed lines in LOS images) causes ground deformation and swelling. NS is
close enough to the unlined canal to have significant vertical deformation across the SSAF. This entire section
of canal was concrete lined in 2006, which would have reduced the ground swelling and the vertical
deformation for the ENVISAT and Sentinel-1 analyses. Therefore, we consider that the creep rate at NS during
the ERS time frame is largely uncertain, whereas the others are more reliable. We note that the creep at CV is
well resolved in all three InSAR analyses, and it has the greatest reduction from 7.5 to 1.6 mm/year. To begin
to understand the cause of this dramatic reduction, we have investigated the change in static stress rate over
this 25-year period caused by nearby major earthquakes.

4. Coulomb Stress Changes by Nearby Earthquakes

Time-dependent Coulomb stress changes (King et al., 1994) due to the three major earthquakes were
calculated using a viscoelastic model (Smith & Sandwell, 2004; plate thickness 60 km, a Young’s modulus
70 GPa, shear modulus of 30 GPa, mantle viscosity of 1 × 1019 Pa/s, and coefficient of friction of 0.6).
Coseismic slip models from Xu et al. (2016) were used to calculate quasi-static stress changes associated with
each earthquake (Figures 3a–3c), as well as the postseismic stress relaxation in the years that follow
(Figure 3e). Note that interseismic background stressing rates along the SSAF segment and nearby faults
(~20–30 kPa/year; Smith-Konter & Sandwell, 2009) are not included. Coulomb stress on the receiver fault
was calculated at 1 km depth (Figure 3, lower). Step changes in stress are due to the earthquakes, whereas
the more gradual changes are due to viscoelastic relaxation. Resolved shear and normal components are also
provided in Figures S5–S6. We note that an elastic half-space model (Stein et al., 1992; Toda et al., 2005) gives
the same coseismic stress change but with no stress evolution between events.

5. Is Creep Rate Modulated by Dynamic or Static Stress Changes?

First, we consider the effects of dynamic, and static stress changes explain the observed temporal variations
in creep rate. Dynamic triggering occurs when stresses from passing seismic waves cause near-instantaneous
creep that is followed by a decrease in creep rate for a few months (Rymer et al., 2002; Wei et al., 2011). The
three large nearby earthquakes produced dynamic stress variations of ~500 kPa (Figures S7 and S8) which are
about 40 times larger than the peak static Coulomb stress change following the Landers event. However,
these imposed stress changes are short-lived and vanish within minutes. Instantaneously dynamically
triggered creep would lead to reduced creep rates after the earthquakes, but we see both increase and
decrease in creep rates following the Landers and the Hector Mine/EMC events, respectively. Therefore,
the temporal variations in long-term creep rates cannot be explained by dynamic triggering alone.

10.1029/2018GL080137Geophysical Research Letters

XU ET AL. 5



Figure 3. Coulomb stress change in response to the (a) Landers, (b) Hector Mine, and (c) El Major-Cucapah earthquakes in
southern California. (d) Creep rates decrease systematically with time at the five locations with leveling data. (e) Coulomb
stress versus time at the five locations has a large increase from the Landers earthquake and smaller decreases from Hector
Mine and El Major-Cucapah. PC = Painted Canyon; BX = Box Canyon; NS = North Shore; CV = Corvina Beach; BC = Bat Caves.
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A second type of dynamic triggering occurs because of a change in fault zone permeability due to dynamic
stresses from passing seismic waves (Elkhoury et al., 2006), which could affect the pore-fluid pressure, the
effective normal stress, and thereby the creep rate. However, the variation in permeability occurs over time
periods of a few months and, like dynamic triggering, its influence on creep rate always has the same sign
and is unable to explain our observations.

We suggest that the smaller yet permanent change in static Coulomb stress plays a dominant role in
modulating long-term creep rates, because it can explain both increases and decreases in creep rate. From
our calculations, the largest overall static stress change was caused by the 1992 Landers earthquake, which
produced a stress increase of 8–16.5 kPa at the five sites (Figure 3). The largest stress increase occurred at PC,
which is closest to the Landers rupture (~75 km away). Stresses increase slightly for the 7 years following the
Landers event due to viscoelastic rebound. The 1999 Hector Mine rupture produced a 0.5–4 kPa stress drop at
four of the five sites; BC experienced a very small stress increase (<0.25 kPa) due to its position with respect to
Hector Mine’s positive southern stress change lobe. Postseismic stress variations following the Hector Mine
earthquake were largely dominated by the continuing Landers (positive) relaxation signal. The April 2010
EMC rupture produced a 1.3–5 kPa stress drop at all five sites, with the largest stress drop at BC, which is
closest to the northern limit of the El Mayor rupture. Postseismic stress change following the EMC earthquake
is dominated by the Landers relaxation signal.

Temporal variations in creep rate (Figure 2) are somewhat correlated with these Coulomb stress changes
(Figure 3). Prior to the 1992 Landers earthquake, typical creep rates on the SSAF were relatively low at
~2–4 mm/year (Louie et al., 1985; Sieh & Williams, 1990). The higher creep rates on the SSAF following the
Landers earthquake and the later lower values following the Hector Mine and EMC earthquakes coincide with
positive and negative stress changes, respectively.

This correlation between the static stress change and fault slip rate can be understood in the framework of
rate-and-state fault friction. For stable, velocity-strengthening fault frictional properties that are typically used
to describe shallow faults, a positive Coulomb stress change causes an instantaneous increase in creep rate,
with time-dependent relaxation ensuing; a negative stress change causes an immediate decrease of creep
rates (e.g., Perfettini & Avouac, 2004). Using a 1-D fault model with parameters motivated by the SSAF, we
demonstrate that a step increase/decrease of Coulomb stress on the order of ~20 kPa can plausibly result
in a multiyear increase/decrease of fault creep rates (Text S2; Figures S9 and S10). This model would also
predict that the creep rate would decrease during the decade following the ERS event. To test this decrease,
we split the ERS stack at June 1996 and computed two rates (1992–1996, 1996–1999). We find that, indeed,
there is a significant decrease in rate between the two periods (Figure S3), although the creep rate
uncertainties are much larger when the timespan is bisected.

We note that this long-term modulation of the creep rate by Coulomb stress changes is similar to the
long-term evolution in seismicity rate following the Landers and Hector Mine earthquakes (Toda et al.,
2005). They find that positive Coulomb stress changes amplify the background seismicity, whereas negative
stress changes suppress the background seismicity, over time scales of years to decades, similar to our
observed correlations. The effect of static stress changes on creep rates also resemble those in postseismic
studies of afterslip surrounding earthquake-ruptured region on the fault (e.g., Marone et al., 1991), although
the involved stress/rate changes here have much smaller amplitudes.

Compared to aftershock or afterslip processes, triggered creep on the SSAF is characterized by both transient
and long-term changes in fault stress and slip rate. While the existence of fault creep above the seismogenic
zone is readily explained by velocity-strengthening frictional properties of the near-surface fault zone,
transient creep events are well-documented on some fault areas immediately following regional
earthquakes, suggesting that other physical mechanisms are involved, such as conditionally stable frictional
properties (e.g., Liu & Rice, 2005; Wei et al., 2013), geometrical complexities (e.g., Romanet et al., 2018), or pore
pressure variations (e.g., Khoshmanesh & Shirzaei, 2018; Segall & Rice, 1995).

To aid the interpretation of observations, we summarize the creep triggering processes on the SSAF in a
conceptual model (Figure 4). The regional earthquake can dynamically trigger creep in some fault areas,
leading to a reduced long-term creep rate while imparting stress changes to nearby fault areas.
Consequently, the static stress perturbations on fault areas that accommodate steady creep, due to both
the earthquake and local triggered creep, modulate the creep rates over the long term. Our InSAR
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observations constrain the overall creep rates of the shallow SSAF, including fault areas with both creep
modes. Note that such stress transfer processes and collective kinematic behavior should hold regardless
of the underlying mechanisms for different creep behavior. While a postevent decrease in the average
creep rate may be attributed to either dynamic or static stress shadow effect, a much higher postevent
creep rate, as observed after the Landers, can only be explained by static stress change.

6. Conclusions

Recent observation from Sentinel-1 of anomalously low creep rate on the SSAF has prompted a complete
reanalysis of 25 years of InSAR data to examine spatial and temporal variations in creep rate. We see a
considerable increase in average creep rate after the 1992 Landers earthquake and a 2–7 times decrease
in creep rate from the ERS time frame to the present. We calculate the Coulomb stress changes associated
with the major earthquakes surrounding the SSAF and consider interactions between quasi-static and
dynamic processes and their implications for the observed fault creep behavior. While dynamically triggered
creep is well documented on the SSAF, the average fault creep rates, in particular the elevated rates after the
Landers, are best explained by the long-term effect of static Coulomb stress changes. Analysis of space- and
land-based geodetic techniques over the next decades will enable a further refinement of these variations on
time scales ranging from days to decades. The current observations of fault creep rate and inferred stress
transfer processes, with more examples from future regional events, will provide critical test cases for under-
standing near-surface fault zone conditions and multitime scale dynamics of fault creep.
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 24 
Text S1. Details of InSAR Data Analysis 25 

We gathered 36 scenes from ERS satellites descending track 356 spanning 08/05/1992 to 26 

06/19/1999 covering the SSAF (Figure 1). We produced 116 interferograms selected 27 

based on a 300m perpendicular baseline threshold (Figure S1). For the case of ENVISAT, 28 

28 scenes from descending track 356 spanning 06/28/2003 to 03/13/2010 and 40 scenes 29 

from ascending track 77 span 10/27/2003 to 03/29/2010 for this area (Figure 1). We 30 

produced 90 interferograms for the descending track and 97 for the ascending track based 31 

on 300-m perpendicular baseline threshold (Figure S1). We also processed 38 scenes 32 

from Sentinel-1 descending track 173 spanning 11/10/2014 to 08/14/2017 and 46 scenes 33 

from Sentinel-1 ascending track 166 spanning 04/03/2015 to 10/19/2017 (Figure 1). The 34 

Sentinel-1 dataset we used, compared to other satellite datasets, has a relatively short 35 

observation time span and thus a smaller signal-to-atmospheric-noise ratio. However, 36 

taking advantage of the Sentinel-1 satellites having a much shorter and regular 12-day 37 
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cadence, an atmospheric phase correction can be performed before we estimate LOS 38 

velocity with stacking. We first produced 126 and 191 interferograms for the descending 39 

and ascending track based on a 150-m perpendicular baseline and 120-day temporal 40 

baseline threshold. With these short time-span interferograms, we were able to derive 41 

atmospheric phase screens by a common scene stacking approach [Tymofyeyeva and 42 

Fialko, 2015; Xu et al., 2017]. Then we further produced 194 and 190 interferograms for 43 

the descending and ascending track based on a 50-m perpendicular baseline threshold for 44 

any pairs spanning over a year (Figure S1). We subtracted the atmospheric phase screens 45 

from these interferograms and then used stacking methods to obtain the final LOS 46 

velocity map (Figure 2).  47 

 48 
 49 

 50 
Figure S1. Perpendicular baseline vs. time plot for the data set used in this study. Each dot 51 
represents a SAR scene with colors denoting different satellites. Each grey line is an 52 
interferogram selected based on the thresholds described in Section 2. 53 
 54 
 55 
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 56 
Figure S2. Leveling profiles at the five positions shown in Figure 1. The extracted vertical 57 
velocity for Painted Canyon (PC), Box Canyon (BX), North Shore (NS), Corvina Beach (CV), 58 
and Bat Cave (BC) are 0.60, 0.75, 4.00, -1.00 and -0.75 mm/yr, respectively.   59 
 60 

 61 
Figure S3. Descending LOS velocity differential along the fault segment. The numbers are 62 
computed by differentiating the intercepts of linear regressions on the data inside 2km by 4km 63 
boxes on each side of the fault. 64 
 65 
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 66 
Figure S4.  Vertical differentials of the deformation velocity along the fault. The red dots are the 67 
levelling data from Figure S2, corresponding to the ERS time frame. The profiles are the vertical 68 
results from the decomposition with horizontal fault creep plotted in the top panel in Figure 2. 69 
 70 

 71 
Figure S5. As in Figure 3, coseismic shear stress change and postseismic relaxation along the 72 
SSAF segment (positions provided in Figure 1) in response to the Landers, Hector Mine, and 73 
EMC earthquakes. Interseismic background stressing rates along the SSAF segment and nearby 74 
faults (~20-30 kPa/yr) were omitted for illustrative purposes. 75 
 76 
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 77 
Figure S6. As in Figure 3, coseismic normal stress change and postseismic relaxation along the 78 
SSAF segment (positions provided in Figure 1) in response to the Landers, Hector Mine, and 79 
EMC earthquakes.80 

 81 
Figure S7. Coseismic ground motion recorded at the California Geological Survey station 11591 82 
(longitude/latitude: -115.8298°/33.4205°) near Bat Cave and the inferred dynamic stress changes 83 
on the SSAF. (left) Landers, (center) Hector Mine and (right) EMC earthquakes. The particle 84 
velocity in the fault-normal (FN, top) and fault-parallel (FP, middle) directions are shown, 85 
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assuming a strike angle of 315°. The FN and FP velocities, 𝑉, can be approximately related to 86 
dynamic stress perturbations ∆𝜏, through ∆𝜏 = !"

!!
, where 𝐺 is the rigidity (30 GPa) and 𝑉! is the 87 

group velocity of surface waves (3.5 km/s), and combine into dynamic Coulomb stress changes 88 
(bottom). The velocity seismogram data is downloaded from https://www.strongmotioncenter.org. 89 
 90 

 91 
Figure S8. Coseismic ground motion recorded at the California Geological Survey station 11625 92 
(longitude/latitude: -115.9876°/33.5641°) near Box Canyon and the inferred dynamic stress 93 
changes. Plotting conventions are similar to Figure S7. 94 
 95 

Text S2. 1D rate-and-state fault modeling  96 

Here we present results from a 1D spring-slider analog fault model that is governed by 97 

rate-and-state fault friction and with radiation damping. We use this idealized model to 98 

illustrate the typical response of static stress perturbation on fault creep, using model 99 

parameters motivated by the shallow SSAF.  100 

 101 

The force balance equation is as follows: 102 

𝑘 𝑉!" ∙ 𝑡 − 𝛿 − 𝜏! =
𝜇
2𝑐!

𝑉, 
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where 𝑘 is the stiffness of the spring-slider system, 𝑉!" is the long-term plate loading rate 103 

(3 mm/yr), 𝜏! is the frictional resistance, 𝜇 the shear modulus (30 GPa), 𝑐! the shear wave 104 

velocity (3 km/s), and 𝑡, 𝑉 and 𝛿 are time, slip rate, and slip, respectively. 105 

 106 

The rate-and-state friction with the slip evolution law [Dieterich, 1979, 1981; Ruina, 107 

1983] is expressed as follows: 108 

𝜏! = 𝜎𝑓 𝑉,𝜃 = 𝜎 𝑓! + 𝑎𝑙𝑛
𝑉
𝑉!

+ 𝑏𝑙𝑛
𝑉𝜃
𝐿 ; 

𝜃 = −
𝑉𝜃
𝐿 𝑙𝑛

𝑉𝜃
𝐿 , 

where 𝜎 is the effective normal stress, 𝑓! and 𝑉! are the reference coefficient of friction 109 

and reference slip rate, respectively, 𝑎 and 𝑏 are the rate-and-state frictional parameters, 110 

and 𝐿 is the characteristic slip distance. 111 

 112 

We solve these coupled equations, and track the evolution of slip, slip rates, stress, and 113 

state variable of models with velocity-strengthening friction in response to instantaneous 114 

changes in stress 𝜏!. We consider both positive and negative Coulomb stress changes of 115 

25 kPa, with the amplitude motivated by the Landers case. We choose different values of 116 

model stiffness relative to a characteristic stiffness of the system, namely 𝑘! = 𝑏𝜎/𝐿 117 

[Perfettini and Ampuero, 2008]. The velocity, displacement, and time in Figure S9 and 118 

S10 are normalized by 𝑉!", 𝐿/𝑉!", and 𝐿, respectively. 119 

 120 

The results in Figure S9 and S10 demonstrate that (1) the stress change and the resultant 121 

long-term creep rate are positively correlated and (2) the relaxation time for the post-122 

perturbation transient is dependent on the system stiffness and rate-and-state parameter 𝐿. 123 

The current chosen values of 𝐿  (5 mm) are larger than laboratory estimates but 124 

comparable to those adopted in seismic cycle simulations that reproduce seismicity and 125 

afterslip with realistic properties [e.g., Lapusta et al., 2000]. 126 

 127 
Reference 128 
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Geophys. Res., 84(NB5), 2161–2168, doi:10.1029/JB084iB05p02161.  130 
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Lapusta, N., Rice, J. R., Ben‐Zion, Y., & Zheng, G. (2000). Elastodynamic analysis for slow tectonic 133 
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Geophysical Research: Solid Earth, 105(B10), 23765-23789. 135 
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Ruina, A. (1983), Slip instability and state variable friction laws, J. Geophys. Res. Solid Earth, 88(B12), 138 
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 140 

 141 
Figure S9. The behavior of a velocity-strengthening fault in response to a positive Coulomb stress 142 
change. Models with different system stiffness are shown in (a) 0.5kc and (b) 2 kc. The evolution 143 
of (top) displacement, (middle) velocity and (bottom) stress are shown for cases of different a/b 144 
ratios (1.6 and 2.0). Other model parameters are: b=0.001, L=5 mm, σ= 20 MPa, Δτ = 25 kPa. 145 
Red dashed lines mark the time of the imposed instantaneous stress change. Black dashed lines 146 
indicate the unperturbed model behavior. Note that normalized variables are shown in black and 147 
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unormalized variables are shown in blue. 148 
 149 

 150 
Figure S10. The behavior of a velocity-strengthening fault in response to a negative Coulomb 151 
stress change (Δτ = -25 kPa). Plotting conventions are similar to Figure S9. 152 
 153 

 154 
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