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Phase gradient approach to stacking interferograms 
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Abstract. The phase gradient approach is used to construct averages and differences of 
interferograms without phase unwrapping. Our objectives for change detection are to increase 
fringe clarity and decrease errors due to tropospheric and ionospheric delay by averaging many 
interferograms. The standard approach requires phase unwrapping, scaling the phase according to 
the ratio of the perpendicular baseline, and finally forming the average or difference; however, 
unique phase unwrapping is usually not possible. Since the phase gradient due to topography is 
proportional to the perpendicular baseline, phase unwrapping is unnecessary prior to averaging or 
differencing. Phase unwrapping may be needed to interpret the results, but it is delayed until all of 
the largest topographic signals are removed. We demonstrate the method by averaging and 
differencing six interferograms having a suite of perpendicular baselines ranging from 18 to 406 
m. Cross-spectral analysis of the difference between two Tandem interferograms provides 
estimates of spatial resolution, which are used to design prestack filters. A wide range of 
perpendicular baselines provides the best topographic recovery in terms of accuracy and coverage. 
Outside of mountainous areas the topography has a relative accuracy of better than 2 m. Residual 
interferograms (single interferogram minus stack) have tilts across the unwrapped phase that are 
typically 50 mm in both range and azimuth, reflecting both orbit error and atmospheric delay. 
Smaller-scale waves with amplitudes of 15 mm are interpreted as atmospheric lee waves. A few 
Global Positioning System (GPS) control points within a frame could increase the precision to 
-20 mm for a single interferogram; further improvements may be achieved by stacking residual 
interferograms. 

1. Introduction 

Synthetic Aperture Radar Interferometry (InSAR) is a 
promising new too! for making precise geodetic measurements 
over large areas [Gabriel et al., 1989; Massonnet and Rabaute, 
1993; Massonnet et al., 1993; Zebker et al., 1994a; 
Massonnet and Feigl, 1995a; Dixon et al., 1993; Meade and 
Sandwell, 1996]. Sums of interferograms could be used to 
generate high-resolution topographic maps [Zebker and 
Goldstein, 1986; Werner et al., 1992; Madsen et al., 1993; 
Zebker et al., 1994b, 1997], while differences may reveal 
tectonic deformations and atmospheric-ionospheric distur- 
bances [Afraimovich et al., 1992; Massonnet et al, 1995; 
Massonnet and Feigl, 1995b; Peltzer et al., 1996; Peltzer and 
Rosen, 1995; Goldstein, 1995; Rosen et al., 1996; Tarayre 
and Massonnet, 1996; Zebker et al., 1997]. We present a new 
approach to the analysis of interferograms based on the gradi- 
ent of the phase rather than the phase itself. Because this 
method is largely untested, we attempt to address the 
following questions: What is the best mathematical model for 
relating phase and phase gradients given uncertainties in the 
data? What are the main limitations of InSAR measurements 

derived from ERS data for both line of sight (LOS) accuracy and 
horizontal resolution? How can InSAR data be improved for 
both topographic recovery and change detection? What is the 
best design for an InSAR processing system in order to 
achieve near optimal results and be efficient? Of course, many 
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of these questions have been adequately addressed in previous 
publications, and there already exist tested and efficient InSAR 
codes. Nevertheless, we hope our answers will help clarify the 
literature in several areas. 

Repeat-pass interferometry records the phase difference, 
modulo 2r•, between the reference and repeat SAR passes. 
Since the absolute phase difference is not measured, the 
fundamental quantity in the interferogram is the local phase 
gradient; phase differences between two points within the 
frame are best established by contour integration along a con- 
tinuous path. Assuming there are no true phase discontinuities 
or layover, the sum of the phase changes around any closed 
loop within the interferogram must be zero (i.e., zero residue) 
[Goldstein et al., 1988' Ghiglia and Pritt, 1998], so phase 
changes can be described by a conservative (or analytic) 
function [Resnick and Halliday, 1966, p. 153' Kaplan, 1973, 
p. 593]. The most important aspects of the phase gradient are 
that the phase gradient due to topography scales with the 
perpendicular baseline (equation (A5) and that phase gradient 
is usually a continuous function of x (range) and y (azimuth), 
while the wrapped phase contains many 2r• jumps. Because of 
these properties, phase gradients can be scaled and summed 
without phase unwrapping, which is notoriously difficult 
when the signal-to-noise ratio (SNR) is low or when there are 
phase discontinuities due to layover, shadowing, or 
displacement at faults [Goldstein et al., 1988' Zebker et al., 
1994a]. The conservation property of phase also leads to a 
theoretically simple two-dimensional phase unwrapping 
method [Ghiglia and Romero, 1994], which we will employ to 
remove residues from the stacked phase gradients. 

After developing the mathematical framework for the phase 
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mission to demonstrate the stacking method and to estimate 
error sources. On the basis of previous studies, error is divided 
into short-wavelength radar noise [Li and Goldstein, 1990; 
Zebker and Villasenor, 1992; Gatelli at al., 1994], 
intermediate-wavelength tropospheric-ionospheric delay 
[Goldstein, 1995; Rosen et al., 1996; Massonnet et al., 1994; 
Tarayre and Massonnet, 1996; Zebker et al., 1997], and 
longer-wavelength orbit error [Massonnet and Rabute, 1993; 
Zebker et al., 1994a]. The common signal is the average 
(stack) of N interferograms, while the noise is the difference 
between two interferograms or the difference between a single 
interferogram and the stack. Over the short-wavelength band 
0• < 2 km), cross-spectral analysis is used to examine the SNR 
as a function of wavelength in both the range and azimuthal 
directions. These estimates are used to design prestack and 
poststack low-pass filters to suppress short-wavelength 
noise. Over the intermediate-wavelength band (2-60 km), one 
SAR image displays tropospheric delays due to atmospheric 
gravity waves. We use this information on atmospheric delay 
to better understand the role of ancillary measurements (e.g., 
Global Positioning System (GPS)) in mitigating these effects. 
Finally, large-scale differences in interferograms reveal the 
combined effects of orbit error and average tropospheric- 
ionospheric delay. 

Using this theory and ERS signal characteristics, we are 
developing an InSAR-processing system. Our design goals 
are to minimize the complexity of the code and processing 
steps in order to avoid blunders, to document the system and 
make it easy to use, to construct a modular system where the 
main communication channel is through a standardized file 
header, and to make the code efficient by programming in the 
most appropriate language. Finally, we avoid adjusting trends 
across the interferogram and strive to achieve accurate results 
by using the best available orbit information [Scharroo et al., 
1998] and atmospheric corrections. 

2. Theory 

2.1. Phase Gradient 

There are several advantages to working with the phase 
gradient instead of the phase: (1) The phase gradient can be 
computed directly from the real and imaginary components of 
the interferogram [Werner et al., 1992] without first comput- 
ing the phase; this is especially important when the noise 
level approaches n rad per pixel. (2) The Earth-flattening cor- 
rection is easily expressed in terms of a phase gradient 
(Appendix A). (3) Phase gradients can be averaged or differ- 
enced without phase unwrapping, so a digital elevation model 
(DEM) is not required for change detection. The average of the 
phase gradient from many repeat interferograms, having dif- 
ferent baselines, will eventually fill the gaps due to temporal 
and baseline decorrelation. A long-term average should mini- 
mize the phase errors due to tropospheric and ionospheric 
delay and thus provide an accurate base for change detection 
interferograms [Zebker et al., 1997; Fujiwara et al., 1998]. (4) 
The gradient of the residual phase is a component of strain that 
can be computed directly from a numerical model of surface 
deformation. In a previous study [Price and Sandwell, 1998] 
we showed that these advantages and simplifications enable 
one to examine shorter wavelengths in the interferogram 
where the signal-to-noise ratio may be low. There are several 
disadvantages to this approach: (1) Phase gradients cannot be 

compared directly with geodetic measurements of ground dis- 
placement, so phase unwrapping is still required. (2) The gra- 
dient operation enhances the short-wavelength noise, so care- 
ful low-pass filtering of the full-resolution interferogram is 
required. (3) The standard residue-tree algorithm for phase 
unwrapping [Goldstein et al., 1988] cannot be used on stacked 
phase gradients since every closed path of integration has 
some small residue. 

The standard approach to adding or subtracting wrapped 
phase requires phase unwrapping, scaling the phase by the 
ratio of the perpendicular baseline, and finally forming the 
average [Zebker et al., 1994a; Werner et al., 1996]. Unique 
phase unwrapping is not always possible because areas of the 
interferogram may not be coherent owing to high relief or 
wavelength-scale surface changes between the two observa- 
tion times [Goldstein, 1995]. Here we avoid phase unwrap- 
ping or delay it until the final step of the processing. 
Suppose •Pl and •Ps are wrapped phases of two interferograms 
having long (1) and short (s) baselines, respectively. Because 
the phase is wrapped, one cannot scale •ps into •Pl (higher 
fringe rate) or vice versa. However, one can compute and scale 
the phase gradient. Using the chain rule, we find that the 
gradient of the phase •p = tan -1 (I/R) is 

RVI = 1VR 
v•p(x) = (1) 

R2+i • 

where R(x) and/(x) are the real and imaginary components of 
the Earth-flattened interferogram (equation (A10)). The 
interferogram is the product of two registered single look 
complex (SLC)images C•C2' (asterisk denotes complex 
conjugation), and we will refer to C• and C2 as the reference and 
repeat images, respectively. Unlike the wrapped phase, which 
contains many 2n jumps, the real and imaginary components 
of the interferogram are usually continuous functions, and thus 
the gradient can be computed with a convolution operation. 
Because this is a finite difference of nearby pixels, one must 
minimize the overall phase gradient prior to computing the 
derivatives; a large part of the phase gradient is removed 
during the Earth-flattening operation (Appendix A). The 
average phase gradient from N interferograms each having a 
perpendicular baseline bi is 

v•p = 1 • I v•Pi (2) N i=l •-i 

where v•p is the phase gradient per unit baseline. During 
averaging, one can weight regions of the individual 
interferograms according to the local correlation and local 
topographic gradient to achieve an optimal mix. Our initial 
approach is to edit phase gradient estimates where the 
correlation falls below 0.2 or the magnitude of the phase 
gradient is greater than 1.2 rad per pixel. 

Proper weighting of the component interferograms will 
depend on many factors and will require a more complete 
analysis than we will provide below using only six' 
interferograms. However, it is clear that the simple 
unweighted average (equation (2)) is not correct. Consider the 
average of one 10-m baseline and five 100-m baseline 
interferograms; the short-baseline interferogram will 
dominate the stack yet it could be contaminated by 
atmospheric artifacts. A more reasonable assumption is that 
each phase gradient estimate has about the same noise level, 



SANDWELL AND PRICE: STACKING INTERFEROGRAMS 30,185 

independent of baseline length. 
should be weighted by the absolute baseline length 

N 

i=1 

In this case, the components 

N 

• sgn(bi) 
i=1 

N 

5; b,t 
i=1 

(3) 

It is clear that the cumulative baseline in the denominator of 

(3) should be large to achieve maximum noise reduction. 
Longer baselines will provide better noise reduction, but these 
estimates will not be reliable in areas of rugged terrain where 
the phase gradient exceeds 1.2 tad per pixel. Hopefully, the 
estimates from shorter baselines will fill these gaps. Areas of 
layover can never be filled, and these data gaps pose a major 
obstacle to the phase unwrapping scheme outlined in section 
2.2. [Zebker and Lu, 1998]. In practice, a suite of baselines 
will provide the best estimate of V0 . 

For change detection one selects a candidate interferogram 
spanning a deformation event and subtracts the long-term 
average after multiplying by the perpendicular baseline: 

WlPchange = WIp- bWIp (4) 

If the perpendicular baseline of the interferogram spanning the 
event is short, then Ibl is small and errors in the topographic 
correction will be unimportant. If there are several 
interferograms spanning the same event, then they can be 
averaged to improve the SNR. Note that this quantity 
(equation (4))is the horizontal gradient of the line of sight 
displacement or an unusual component of strain. This strain 
component could be computed directly from a model, so phase 
unwrapping is not required. However, phase unwrapping is 
required to convert the phase gradient anomaly to total phase 
for comparisons with other geodetic measurements. 

There are three end-member cases for change detection: (1) 
an event where the phase delay anomaly occurs in a single 
SAR image (usually atmospheric), (2) an event where the 
phase delay anomaly is permanent (earthquake), and (3) a 
secular time variation where the strain rate is uniform. In this 

study, we only consider case 1 using real data. One approach 
to isolating an event using noisy data is 

N 

V q}atmosphere = i= 1 (5) N 

i=1 

where V0• is the phase gradient anomaly from (4) and ]5 is the 
spatial correlation function given in (A15). When the quality 
of the individual change interferograms is highly variable 
and/or there is a wide range of perpendicular baselines, it is 
best to downweight the inferior data. For the permanent 
change, (5)can also be used although it is not necessary to 
have a common SAR image in all of the component 
interferograms' they must simply span the event. Finally, for 
secular change where a constant strain rate is expected, one 
could weight each interferogram according to its absolute time 
span Iml' 

• sgn(Ati) V•pi 
V IPsecular = i= 1 (6) 

N 

i=I 

where VlPsecular is strain rate. It is clear that the cumulative time 
span in the denominator of (6) should be large to achieve 
maximum noise reduction. 

The main new feature of this approach is that the averaging 
and differencing of many interferograms for topographic 
recovery and change detection is all done prior to unwrapping 
the phase. Moreover, in the case of change detection, removal 
of the main topographic signal reduces the phase gradient 
toward zero. Thus, in areas of poor correlation, an initial 
guess of zero phase gradient will provide a good starting point 
for any phase unwrapping algorithm. 

2.2. Phase Unwrapping and Residue Elimination 

As noted in section 1, the main weakness of the phase 
gradient approach is that the gradients must still be integrated 
to recover topography and/or displacement. The two main 
unwrapping approaches summarized recently [Zebker and Lu, 
1998; Ghiglia and Pritt, 1998] are the residue-tree algorithm 
[Goldstein et al., 1988] and the least squares algorithm [Hunt, 
1979; Ghiglia and Romero, 1994]. Unfortunately, the residue- 
tree algorithm cannot be applied to stacked phase gradients 
because the stack is completely populated with small residues. 
Consider the integration of the phase gradient around a closed 
path C containing area A. If the phase •p is a continuous 
function and has continuous first derivatives, then by Stokes 
theorem it is equal to the integral of the divergence of the curl 
over the area: 

,axay ayax 
dx dy (7) 

Moreover, if the phase represents a conservative function such 
as topography, then both integrals are zero for all paths/areas. 
We have computed the curl of the stacked phase gradient of 
example data sets (below), and as expected, we find paired 
residues associated with areas of layover. The unfortunate 
result is that the residues in other areas are never exactly zero. 
This is because the range and azimuth phase derivatives are 
performed independently, edited independently, and then 
stacked independently; there is no reason that they should be 
consistent. The implication is that different integration paths 
between two points will always yield slightly different results, 
and thus the residue-cut tree algorithm cannot be used. These 
small residues can be eliminated as described next, but this 

involves unwrapping the phase using an approach that is 
functionally equivalent to the least squares approach of [Hunt, 
1979]. 

Oddly, we derive the so-called least squares approach 
without using the principle of least squares! We then show 
that our approach is mathematically different from the least 
squares approach although it is functionally equivalent. Let 
u(x) = (&p/c•x, &p/c•y) be the numerical estimates of phase 
gradient (range, azimuth)as given in (1), (3), or (4). Any 
vector field can be written as the sum of two vectors as 

follows: 

u = v0+vxw (8) 

where 0 is a scalar potential and • is a vector potential. We 
aqq•!mo that tho phaqo is a conservative filnoticm, en that tho 
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rotational part of the vector field must be zero everywhere. 
However, layover, filtering, and stacking interferograms 
introduce a rotational component that should be eliminated. 
This is accomplished by taking the divergence of (8) since 
V ß V x • -- 0. The phase and phase gradient are now related by 
the following differential equation: 

V.u = V2•p (9) 

For a finite region the outward component of the phase 
gradient should be zero along the boundaries [Ghiglia and 
Romero, 1994]; VO' n = 0, where n is the outward normal. 
The two-dimensional Fourier transform of (9)provides an 
algebraic relationship between the total phase Otot(k) and the 
measured phase gradient u: 

Otot(k) = [•l[ik ß I r2[u• 2rrlk 2 
(10) 

where k = (I/2, x, I/2,y) and It2[.] and F2-i[.] are the forward and 
inverse two-dimensional Fourier transforms, respectively. 

The zero phase gradient boundary condition is automatically 
satisfied if the Fourier transform has only cosine components 
[Ghiglia and Romero, 1994; Press et al., 1992, p. 514]. In 
practice, one takes the two-dimensional Fourier transform of 
each component of the estimated phase gradient, scales by the 
appropriate wavenumber, and inverse cosine transforms the 
sum. Note that our expression is slightly different from the 
expressions by Ghiglia and Romero [1994], and this 
difference reflects not only the difference in the derivation but 
also the difference in the method of computing derivatives 
(Figure 1). In the next section we describe a numerical 
derivative operator that follows the gain of an ideal derivative 
operator out to one-half bandwidth of the interferogram. The 
least squares approach of Hunt [1979] uses a first-difference 
approximation to the Laplacian operator (i.e., second 
derivative), which does not match the gain of a true derivative, 
especially at high wavenumber. The sinc-function loss of the 
first-difference operation is recovered through the cosine 
terms in the denominator (equation 13 by Ghiglia and Romero 
[1994]). Both approaches are correct since the respective 
inverse operators match the forward differential operator 
(Figure 1). A second subtle difference is that in the least 
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Figure 1. (top) Transfer functions of differential operators (dotted curve is ideal derivative, dashed curve is 
first difference, and solid curve is Parks McClellan design; see Figure 3). (middle) Inverse integral operator for 
first difference (dashed curve) and ideal derivative (solid curve). (bottom) Gain of combined differential 
operator followed by integral operator (dashed curve is first difference approach, and solid curve is the 
approach used in this paper). Note that our approach has signal loss at wavelengths shorter than 0.5 times the 
Nyquist wavelength. 
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squares approach, two derivatives are performed in the space 
domain while in our approach one derivative is performed in 
the space domain while the second is performed in the 
wavenumber domain. This complicates the computer code 
slightly because the forward two-dimensional (2-D) transform 
on each component of phase gradient involves a sine 
transform (in the differentiated direction) followed by a cosine 
transform in the other direction. 

shaped filter was used to avoid the prominent sidelobes of a 
simple boxcar average. For ERS-1/2 the spacing of pixels in 
ground range is -5 times the spacing of pixels in azimuth. We 
have designed a convolution filter that is nearly isotropic in 
ground-range and azimuth coordinates: 

(11) 

3. Data Analysis 

3.1. Selection 

To assess the improvements in SNR due to stacking phase 
gradients as well as to estimate the various error sources in 
ERS interferograms, we have selected six frames from the 
Tandem mission which span a short period of time and have a 
wide range of baselines (Table 1). From these we have formed 
six interferograms. The area of the frames (Figure 2) was the 
site of the 1992 Landers earthquake, so we had purchased the 
data for a previous study [Price and Sandwell, 1998]. 
Moreover, the area was selected because the dry surface of the 
Mojave Desert is ideal for retaining high correlation in repeat- 
pass interferometry. Five slave images were aligned in range, 
azimuth, and Doppler centroid to a single master image 
(ERS2_3259) so interferograms could be constructed from any 
pair [Li and Goldstein, 1990]. The vertical and horizontal 
positions of the set are shown in Figure 3, and six of the many 
possible interferometric pairs are listed in Table 1. Earth 
flattening (equations (A9) and (A10)) was performed on a row- 
by-row basis to account for the change in baseline length 
along the frame. Baselines were computed as described in 
Appendix B using precise orbits provided by Delft University 
[Scharroo et al., 1998]. 

3.2. Design of Low-pass and Gradient Filters 

Interferograms formed from full-resolution SLC images 
contain significant phase noise, especially when the time 
separation between the repeat and reference images is long or 
there are disruptions in the surface from vegetation, moisture, 
or snow. Moreover, if the signal-to-noise ratio of the phase 
decreases with decreasing wavelength, then the gradient 
operation will amplify the shortest-wavelength noise while 
suppressing the longer-wavelength signal. This will result in 
an overall noisy estimate of phase gradient. A Gaussian- 

where x is range, y is azimuth and crx, y are filter widths. On the 
basis of the results of the coherence analysis (section 3.3.), 
we have set crx = 8 m and Cry = 16 m, which corresponds to a 0.5 
gain at a wavelength of 42 m in range (105-m ground range) 
and 84 m in azimuth. The actual filter is a discrete form of (11) 
with dimensions of 5 pixels in range and 17 pixels in azimuth. 

The gradient operation follows the low-pass Gaussian filter. 
As shown in Figure 1, a two-point, first-difference filter will 
introduce sinc-function sidelobes in the spectrum that will 
leak from short wavelengths to long wavelengths if the inter- 
ferogram is decimated. To avoid the leakage problem, we have 
designed a longer-derivative filter using the Parks-McClellan 
filter design approach as implemented in MATLAB Signal 
Processing Toolbox. The filter coefficients and imaginary 
response are shown in Figure 4. The derivative filter is 17 
points long (solid curve, top) while the Gaussian filter is only 
5 points long in range (dashed curve). Figure 4 (bottom) 
shows the gain for a theoretical derivative and the numerical 
derivative. The convolution of the Gaussian and derivative 

filters has a peak response at a wavelength of 50 m. The loca- 
tion of the peak can be adjusted by varying Cr in (11) although 
the derivative filter limits the best resolution to 30-m wave- 

length. Note that to achieve these high resolutions, one must 
operate on the full-resolution ERS data. The phase gradient 
was constructed by applying the operations given in (1). 
After the filtering and differentiation the phase gradients were 
decimated by 2 pixels in range and 4 pixels in azimuth reflect- 
ing the cutoff wavelengths of the Gaussian filter. Finally, we 
eliminated phase gradient estimates where the phase rate 
exceeded 1.2 rad per pixel and where the correlation (A15) was 
less than 0.2. This eliminated areas of layover and temporal 
decorrelation, respectively. The three Tandem pairs have only 
a 1-day time lag, and the correlation was generally high. The 
correlation was lower for the other three interferograms, espe- 
cially in the southern part of the area that contains the 
vegetated San Bernardino Mountains. 

Table 1. Data Frames, Baseline Parameters, and Orbit Error 

Reference Repeat 

Satellite Orbit Year Day Satellite Orbit Year Day 
ERS1_21930 1995 268 ERS1_22932 1995 338 

ERS2_3259 1995 339 ERS1_21930 1995 268 

ERS2_3259 1995 339 ERS 1_22932 1995 338 

ERS2_3760 1996 009 ERS 1_23422 1996 008 

ERS1_21930 1995 268 ERS2_2257 1995 269 

ERS2_3259 1995 339 ERS2_2257 1995 269 

Baseline Orbit 
Start/End Error 

Elevation 

Length? m Angle? cz B_ Range 1 mm Azimuth 7 mm 
55.4 91.2 18.0 -50 33 
56.1 91.2 

121.6 -29.0 79.8 -42 37 
120.4 -28.9 

105.0 -1.4 97.7 41 45 
107.2 -1.5 

135.0 -1.6 125.6 36 39 

138.9 -1.6 

343.4 2.0 326.6 40 -68 

346.4 2.0 

452.0 -5.9 406.5 -46 -49 

453.9 -5.8 
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Figure 2. Shaded topography in Mojave Desert area (100-m contour interval). White box outlines area of 
ERS-1/2 Synthetic Aperture Radar (SAR) frame 2907 along a descending orbit. The Mojave River flows from 
southwest to northeast. 

3.3. Short Wavelength Coherence 

Our initial objective is to design a low-pass filter that will 
suppress noise but retain the signal at high spatial 
wavenumber that may become available after stacking many 
interferograms. The repeat-track analysis method [Welch, 
1967; Bendat and Piersol, 1986; Marks and Sailor, 1986] was 
used to evaluate the signal and noise characteristics of the 
phase gradient data as a function of spatial wavenumber. For 
the analysis we selected two interferograms generated from 
four independent SAR images (i.e., rows 3 and 4 of Table 1). 
Consider the range coherence first: the x components of the 
phase gradient along corresponding rows (length 2048) of the 

two interferograms are loaded into vectors st and s2, where s2 
is scaled by the ratio of the perpendicular baselines. If there i s 
no noise, the data vectors should be equal to their common 
signal S, but because of many factors, each vector has a noise 
component n• and n 2. The model is 

sl = S + nl s2 = S + n2 (12) 

An estimate of the signal is the average of the two x phase 
segments S = [s• + s2]/2 while an estimate of the noise is the 
difference between two x phase segments d = [n• - n2]•. Each 
segment of x phase data plus their sums and differences were 
Hanning windowed and Fourier-transformed. Spectral 
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Figure 3. Positions of ERS orbits in relation to the master orbit (ERS-2 3259). Year and day of year are also 
provided. The crosses show satellite positions at start of frame, while open circles show positions at end of 
frame. Three pairs of SAR images are from the ERS-1/2 Tandem mission and have 1-day time intervals. For 
our analysis we used a suite of perpendicular baselines ranging from 18 m for 22923-21930 to 406.5m for 
2257-3259. 

estimates from 350 independent rows were ensemble averaged 
to form smooth power spectra, cross spectra, and coherence 
segments (only every eighth row was analyzed). The range (x) 
and azimuth (y) gradient data were treated separately. The 
results are shown in Figure 5 where the signal power, noise 
power, and coherence are plotted versus spatial wavenumber. 
Note that to obtain the power in the phase rather than the 
phase gradient, one should divide each curve by (2/rk) 2. The 
derivative operation has no effect on the estimates of 
coherence, and it provides a natural means of "prewh"tening" 
prior to Fourier analysis. 

The signal power (Figures 5a and 5b) decreases rapidly with 
increasing wavenumber in both range and azimuth reflecting 
the power spectra of the common topographic signal. The 
noise spectra increase with increasing wavenumber between 0 
and 0.01 m 4 (100-m wavelength) reflecting the "whitening" 
provided by the derivative operation. At wavenumber greater 
than 0.01 m -1, the noise spectra begin to flatten reflecting the 
Gaussian filter. The coherence (Figures 5c and 5d) reflects the 
SNR and provides an estimate of the resolution of the data in 
both range and azimuth. In slant range the coherence falls 
below 0.2 at a wavelength of 90 m (-230 m in ground range) 
while in azimuth the coherence falls below 0.2 at a wavelength 
of 180 m. For comparison, the Gaussian filter has a 0.5 gain 

at a 42-m wavelength in range and an 84-m wavelength in 
azimuth. Thus the filter gain is quite high, >.75 over the 
coherent portion of the spectrum. The Gaussian filter widths 
could be increased to suppress more noise, but eventually We 
would like to average many interferograms; thus we do not 
want to eliminate signals that may emerge above the noise at 
high wavenumber. 

Of course, the interferograms that we have selected hav e 
perhaps the best signal-to-noise characteristics available from 
ERS data because of the short time interval between images 
and the ideal radar reflective properties of the Mojave Desert. 
Both temporal and baseline decorrelation will increase the 
noise level, which will decrease the spatial resolution. In 
these cases a wider filter can be applied to increase the clarity 
of the interferogram at the expense of spatial resolution 
[Gatelli et al., 1994]. The standard measure of correlation 
(equation (A15))reveals important spatial variations associ- 
ated with water, vegetated areas, snow, etc. However, it should 
be noted that the standard measure is an average of the coher- 
ence over the entire band that passed through the multi-look 
filter (Gaussian in our case); the level of correlation will 
depend on the sizes of the azimuth and range filters applied t o 
the interferogram. Many geophysical signals such as topog- 
raphy and earth deformation have red spectra while we have 
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Figure 4. (top) Low-pass Gaussian filter (dashed curve) and derivative filter (solid curve) applied to full- 
resolution interferogram. (bottom) Gain of ideal derivative filter (dotted curve), 17-point convolution filter 
(solid curve), and Gaussian low-pass filter followed by 17-point derivative filter (dashed curve). The combined 
filter has little loss for wavelengths greater than 100 m. 

shown that the noise spectrum is blue in terms of phase gradi- 
ent (white in terms of phase). 

3.4. Stacking Phase Gradients and Topographic 
Recovery 

Phase gradients from six interferograms were stacked as 
described by (3). The suite of baselines dramatically increases 
the dynamic range of ERS phase recovery over all types of 
terrain. The interferogram with the shortest perpendicular 
baseline (18 m)has almost complete spatial coverage while 
coverage of high-relief areas is poor for the longest-baseline 
interferogram (406 m). The cumulative baseline shown in 
Figure 6 illustrates the editing associated with layover, high 
relief, standing water, and agricultural fields. The SAR image 
ERS1_22932 was shifted by 5600 rows of raw SAR data with 
respect to its interferometric pair(s); this is reflected in a 
shaded band along the top of the cumulative baseline image 
(Figure 6). Out of a possible cumulative baseline of 1054 m 
(white in Figure 6), there are very few areas having cumulative 
baseline less than 200 m. Stacked azimuthal and range phase 
gradients (Figures 7 and 8, respectively) have nearly complete 
coverage and do not show any discontinuities associated with 
dropouts from the individual interferograms. One would 
expect that long-wavelength orbit error would shift each inter- 

ferogram to a different average level and that the stack would 
contain these shifts. However, keep in mind the dramatic 
suppression of long wavelengths by the derivative filter. For 
example, a 50-mm orbit error over a 100-km frame will intro- 
duce a DC offset in phase gradient of only 0.0050 rad per 
pixel, which is 100 times smaller than typical phase gradients 
associated with topographyß For an accurate stack it is impor- 
tant that the cumulative baseline length accurately reflects the 
baselines of the components used in the stack, especially if 
the cumulative baseline is short. This is one of the reasons 

why accurate orbital information is needed. Since we do not 
unwrap the phase of the individual interferograms, ground 
control information cannot be used to estimate the baseline 

parameters [e.g., Zebker et al., 1994a]. 
The stacked range and azimuthal phase gradients were 

unwrapped using (10), which relies on complete phase cover- 
age. From Figure 2 it is clear that this area contains large, 
long-wavelength components of elevation (phase) change 
between the low areas of the Mojave River in the north 
(-600 m)and the high areas of the San Bernardino Mountains 
(2600 m)on the southeast. In addition, the cumulative 
baseline in the rugged areas of the San Bernardino Mountains 
is short and highly variable, making unwrapping the phase 
difficult. Finally, and most troubling, areas of layover occur 



SANDWELL AND PRICE: STACKING INTERFEROGRAMS 30,191 

a 101 

100 

range 
ß , , 

0 0.005 0.01 0.015 0.02 

b10 • 

10 o 

azimuth 
, , 

ß 

ß 

0 0.005 0.01 0.015 

C I 

0.8 

c 0.6 

o 0.4 

0.2 

d I ß ß 

0.005 0.01 0.015 0.02 

wavenumber (l/m) 

0.8 

0.6 

0.4 

0.2 

o o 
o o o.o15 

ß . 

0.005 0.01 

wavenumber (l/m) 

Figure 5. The correlation between phase gradients from Tandem interferograms reveals the signal and noise 
(a) range and (b) azimuth as a function of wavenumber as well as the coherence versus wavenumber for range, 
azimuth (c,d). The Tandem interferograms (repeat interferograms Table 1) have similar baselines. For 
uncorrelated noise a coherence of 0.2 marks a signal-to-noise ratio of 1 and provides a good estimate of the 
wavelength resolution of the data. Ground-range resolution is 230 m while azimuth resolution is 180 m. 
Stacking may provide better resolution, so we design filters to cut wavelength shorter than -100 m from the 
full-resolution interferogram. 

on the east sides of the mountains and always have negative 
gradient for this imaging geometry. Initially, we set these 
unknown gradients to zero and proceed to unwrap the phase' of 
course, this introduces isolated dipolar artifacts [Zebker and 
Lu, 1998]. We then differentiate the phase to recover new 
estimates of phase gradient in areas of layover and proceed to 
unwrap again; after several iterations the procedure converges 
[Ghiglia and Romero, 1994]. Figure 9 shows the topography 
derived from the unwrapped phase (equation (A14)) for the 
entire area with 100-m contour interval (2027-m peak to 
trough amplitude). Some problems are evident by noting that 
the Mojave River does not always flow downhill. It is more 
difficult to assess the effects of layover. This entire approach 
is experimental; nevertheless, the results are quite encourag- 
ing, and we expect that the long-wavelength problems can be 
solved by removing the phase gradient due to known 
topographic variations (1000-m postings would be adequate). 
Then unwrap the residual phase and add back the phase due to 
the known topography. This overall approach enables one to 
improve the resolution and accuracy of the topographic phase 
and also to ensure that the geometry of the topographic phase 
mat• exactly matches the eeometrv of the master SAR image. 

The vertical accuracy and horizontal resolution of the 
recovered topography are best established by examining a 
known small-scale structure. Oro Grande Wash in the 

southwest comer of the region provides a good test (Figure 
10). The Wash is 25 m deeper than the surrounding sloping 
surface (Figure 11), [U.S. Geological Survey, 1956]; our 
topographic recovery shows a similar depth. The Wash is 
crosscut by the Southern Pacific Railway track, which (Figure 
12) runs nearly parallel to the local contours (Figure 11). The 
topography derived from the ERS data shows the railway cuts 
through the elevated surface surrounding the Wash having a 
depth of 5 m and a width of 60 m. The railway is elevated 
where it crosses the Wash, and one can see the contours are 

elevated by -5 m. The sum of the contours of cut and elevation 
is only 10 m while it should be 25 m. The discrepancy is 
explained because the Gaussian filter has a gain of -0.4 at a 
wavelength of 60 m. 

The cut was crudely measured using a carpenter's tape; the 
depth of the cut is -9 m, and the width is -32 m, and from the 
U.S. Geological Survey (USGS) map we can infer the 
topographic trend surrounding the cut (Figure 13, dashed 
curve). Since the width of the cut is less than the cutoff wave- 
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Figure 6. Cumulative baseline (range) shows the sum of the perpendicular baseline estimates that are 
available for stacking. Maximum baseline of 1050 m is white while zero baseline is black. The shaded patch 
along the top reflects incomplete data from the 22932 ERS-1 frame. Other shaded areas reflect decorrelation 
due to vegetation, standing water, and layover. Cumulative baseline is used to normalize the stack (equation 
(3)) as well as to weight the iterative phase unwrapping for topographic recovery. 

length of the low-pass filter, its shape is unimportant, and a 
Gaussian filter can be applied to the measured profile for 
comparison with the topography recovered from ERS 
interferometry (Figure 13, dotted curve). The match is quite 
good, suggesting that there are no blunders in our processing. 
Moreover, the 2-m scatter about a straight-line trend suggests 
that this is the noise level of the relative topographic 
recovery in this rather flat area. 

It is interesting to note that this narrow railway cut has a 
clearer phase expression than any of the freeways nearby or 
even the California Aqueduct. Examinations of the backscatter 
amplitude reveal that railroad tracks are consistently radar 
bright while nearby roads are radar dark. The brightness is 
unrelated to the orientation of the track with respect to the 
radar illumination direction. Why are these tracks so reflec- 
tive? The answer is that the gravel of the railway bed consists 
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Figure 7. Stacked phase gradient in azimuth (black area is -0.15 rad per pixel, and white area is +0.15 rad per 
pixel) appears as the topography illuminated from the north. 

of chunks that are typically >50 mm across. The C band ERS 
radar has a 56-mm wavelength, so the enhanced reflectivity is 
due to Bragg scattering from the gravel. The overall width of a 
gravel railway bed is only 10 m, so even this small area can 
provide high backscatter. This may have implications for the 
design of low-cost radar reflectors. 

3.5. Orbit Error 

The relative orbit error of each interferogram was estimated 
by computing the difference in phase gradient between the 

individual interferogram and the stack as given in (4). The 
average of the phase gradient difference in range (azimuth) is 
the slope of the orbit error across (along) the frame. The 
integral of this slope provides an estimate of orbit error, and 
these numbers are given in Table 1; errors are typically 40 mm 
over a distance of 100 km corresponding to a slope error of 
0.4 grad. This maps into a perpendicular baseline error (H. 
Zebker, personal communication, 1996; http://www- 
ee.stanford.edu/---zebkeff) of-360 mm, which is consistent 
with, although somewhat larger than, the estimated cross- 
track orbit error of 300 mm for uncorrelated repeat orbits 
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Figure 8. Stacked phase gradient in range appears as topography illuminated from the west. Note that in 
rugged areas such as the San Bernardino Mountains in the south, the slope distribution is asymmetric because 
the radar illuminates the eastern side of the mountains at a steep look angle of 20 ø. This asymmetry, coupled 
with regions of complete layover, poses a significant problem in phase unwrapping. 

[Scharroo et al., 1998]. While we are attributing this slope in 
the residual interferogram to orbit error, a constant zenith 
delay will also produce a uniform slope in range [Zebker et al., 
1997]. Similarly, a change in zenith delay along the track 
will mimic a change in parallel baseline component of the 
orbit error. Thus one cannot distinguish between orbit error 
and long-wavelength propagation delay. As noted in Table 1, 
the distance between the reference and repeat orbits changes 

monotonically along the frame by up to 4 m. Therefore one 
must account for these changes in baseline while applying the 
Earth-flattening correction (equation (A9)). 

One of the advantages of the phase gradient approach for 
change detection is that even long-baseline interferograms 
can provide accurate change measurements as long as the 
correlation remains high over the area. The example shown in 
Figure 14 is a ERS Tandem interferogram (i.e., 1-day time 
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Figure 9. Unwrapped phase scaled into relief (equation (A14)) and contoured at 100-m intervals. At long 
wavelengths the cumulative dropouts on the sides of the mountains facing the radar introduce long-wavelength 
errors in the unwrapped phase. On small scales the relief estimates are quite detailed and accurate. 

span) having a perpendicular baseline of 326 m (ERS2_2257 
minus ERS 1_21930). This unwrapped phase reveals about 
70 mm of orbit error and other shorter-wavelength error of 
--10 ram. There is a wave-like signature at a range of 65 km 
and an azimuth of 40 km that represents contamination of the 
stack by atmospheric waves as discussed in section 3.6. 
Indeed, this contamination introduces large (-30 m) wave-like 
errors in our estimates of topography (total) phase estimate 

above. To reduce these errors, many more interferograms 
should be averaged (>20). 

3.6. Atmospheric Waves 

In addition to orbit error, the six change interferograms 
reveal other phase delays that are presumably due to atmos- 
pheric and ionospheric effects. The three interferograms 
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Figure 10. Topography of Oro Grande Wash (see white box in Figure 9) at a 5-m contour interval. Crosses 
are spaced at 1000-m intervals. White line marks a measured profile shown in Figure 13. The overall depth of 
the Wash is 25 m. The Southern Pacific Railway trends northwest through the center of the image and appears 
as a 5-m-deep trough in sloping surface surrounding the Wash. The track is elevated where it crosses the Wash. 

formed from the ERS-2 SAR orbit number 3259 frame 

(December 4, 1995; 1828 UT) all display prominent wave-like 
signatures having peak to trough amplitudes of 5-15 mm and a 
wavelength of 5 km. To confirm the date of these features and 
establish an unbiased estimate of their amplitude, we averaged 
the three interferograms not containing ERS2_3259. The 
wave-like features are most apparent in the Tandem inter- 
ferogram ERS1_22932 minus ERS2_3259 (Figure 15). The 
waves are weakest in the longest-baseline interferogram (406- 
m ERS2_2257 minus ERS2_3259), suggesting that this inter- 

ferogram is too noisy to adequately resolve these small 
features. We attempted to stack the three residual inter- 
ferograms using the coherence-weighting scheme given in (5). 
However, the long-wavelength trends interacted with the gaps 
in each interferogram to create artificial long-wavelength 
effects. 

To check that this is an atmospheric effect, we have 
searched the National Oceanic and Atmospheric Administra- 
tion (NOAA) archives for advanced very high resolution radio- 
meter (AVHRR)images on that date. The closest image in 
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Figure 11. Contour map of Oro Grande Wash (USGS, 1956; 20-foot contours) shows intersection with 
railway cut and fill. This should be compared with the interferometric topographic recovery shown in Figure 
10. Profile A-A' is 1000 m long. 

time (2045 UT)contains wave-like features in Nevada, 
although they are not pronounced in the area just north of the 
San Bernardino. Nevertheless, we believe that the wave-like 

features are atmospheric gravity waves on the lee of the San 
Bernardino Mountains [Holton, 1972, pp. 172-179]. These 
waves may have moved northeastward during the 2-hour time 
span between the SAR image and the AVHRR image. Another 
possibility is that the waves have no visible signature in the 
AVHRR data. Such features have been seen previously in other 
interferograms [Tarayre and Massonnet, 1996]. 

4. Limitations and Unresolved Issues 

These initial results suggest that the phase gradient 
approach will be a good way to treat ERS interferograms when 
many repeat frames are available. While this report outlines 
the theory, the applications presented here are quite limited 
and do not always demonstrate the advantages claimed in the 

introduction. To better understand the approach, the 
following types of research need to be completed: 

1. Analyze perhaps >20 repeat images instead of just 6. 
With only six interferograms one cannot use the stack to 
begin editing and weeding out the bad estimates. In a similar 
study, where repeat satellite altimeter profiles were stacked, a 
high level of confidence was gained when 16 repeats became 
available, and dramatic improvement was seen when 40 
profiles were stacked [Yale et at., 1995]. 

2. Remove as much known signal as possible before 
filtering the interferogram; this could be done using a low- 
resolution digital elevation model [Massonnet et at., 1994]. 
The expected benefits are a more accurate estimate of 
correlation [Werner et at., 1996], smaller errors due to 
numerical differentiation, retention of more high phase rate 
data in the mountains, and more accurate phase unwrapping 
especially at long wavelength and near the edges of the area. 

3. Further investigate the effects of layover on topographic 
recovery from stacked phase gradients. Layover is a 
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Figure 12. Photograph of cut and fill at Oro Grande Wash. (top) looking southeast across Wash with 
highway 15 in background and (bottom) looking west at railway fill. 

particularly difficult problem because it always eliminates data 
of the same sign; this plagues the Fourier phase unwrapping 
approach. 

4. Design a poststack filter that reflects the noise of the 
residual interferogram. The coherence analysis shown in 
Figure 5 suggests that even very noisy interferograms will 
contain some information at long wavelengths. Perhaps this 
can be recovered after careful removal of the topographic 
signature followed by a low-pass filter. 

5. Explore a long time series of difference interferograms 
to isolate the three types of temporal signals (i.e., single 
event, stepwise event, and secular change). 

6. Finally, given that there will always be residual orbit 
and atmospheric error at the centimeter level and that we would 
like to observe changes at the millimeter level, one should 
explore the best approach to using GPS measurements of 
ground deformation and atmospheric-ionospheric delay to 
correct the interferograms. 
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Figure 13. Profile A-A' across railway cut. Solid curve is from stacked interferogram, dashed curve is a crude 
measurement of the cut, and dotted curve is the measured topography convolved with Gaussian filter used to 
reduce noise in raw interferograms. 

5. Summary 

We have just scratched the surface on using phase gradients 
for recovering topography and surface change from SAR 
interferometry. The theoretical development of the phase 
gradient and their sums and differences are straightforward. 
Carefully designed low-pass and gradient filters must be 
applied to the full-resolution interferogram in order to obtain 
unbiased estimates of gradient at the shortest possible 
wavelength. Precise orbits are needed to remove most of the 
long-wavelength phase gradient as well as to estimate the 
perpendicular baseline scale factors that are needed for 
stacking interferograms. In addition, the precise orbits could 
be used to automate the entire processing sequence, but there is 
still a problem with the timing accuracy of the ERS data 
(Appendix B). 

Phase unwrapping is still a major problem, which we 
believe is best solved by first removing all known signals 
[Massonnet et al., 1996] from the phase maps and then 
stacking as much data as possible to provide complete 2-D 
estimates of phase gradient; we still do not know how to deal 
with areas of layover. The largest component of orbit error 
appears as a trend across each interferogram, and in theory, 
just a few GPS control points could be used to correct it. On a 
smaller scale we show examples of 15 mm of residual 

atmospheric delay at a 5-km wavelength. Since the 
tropospheric perturbations have a red spectrum [Goldstein, 
1995], the error is probably larger at longer wavelengths. If 
this error is stationary in space and in time, then it can be 
reduced as the square root of the number of individual SAR 
images used in the stack. Since the primary error sources are 
concentrated at wavelengths greater than a few kilometers and, 
as we show, the interferograms can resolve features with 
wavelengths greater than 200 m, InSAR will provide the most 
useful information in the 200- to 20,000-m wavelength band. 
It would be nice to have several years of repeat images to gain 
some confidence in the overall approach 

Appendix A 

A1. Phase Gradient Due to Earth Curvature 

Here we follow the derivation of Rosen et al. [1996] and 

Joughin et al. [1996] to highlight the relationship between 
phase gradient in range and the topography of the curved 
Earth. Unlike previous publications, we explicitly include the 
effects of Earth curvature. This is evident in the factor p/c, 
which appears in (A7) and (A8) as well as the factor ro/c, which 
appears in (A13) and (A14). The geometry of repeat-pass 
interferometry is illustrated in Figure A1 (top). The phase 
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Figure 14. Unwrapped phase gradient difference for interferogram ERS2_2257 minus ERS1_21930 having a 
perpendicular baseline of 327 m (5-mm contour interval). The stacked phase gradient was scaled to this 
baseline and removed from this interferogram. Unwrapping reveals a NE-SW trend that is related to orbit error 
and perhaps large-scale atmospheric-ionospheric delays. 

difference • to a point on the ground is related to the range 
difference 60: 

O=4,p 

where/• is the wavelength of the radar. The law of cosines 
provides the relationship among the repeat-pass range, the 
reference-pass range, the baseline length B, and the baseline 
orientation a: 

(,O + 6,0) 2 = ,02 + B 2- 2pB sin(O- (A2) 

Since 6p << p, we have 

6,0 B2 = •- B sin( 
2p 

(A3) 

and since B << p, the parallel ray approximation yields 

•=-4•rB sin(O- a) (A4) 

The derivative of the phase with respect to range is 

0O --4•rB cos(O- o0 00 OP /• • (A5) 
This phase derivative depends on two terms, the perpendicular 
component of the baseline B•_ = Bcos(O-a) and the 
derivative of look angle with respect to range t)0/t)p. The 
perpendicular baseline varies slightly with look angle across a 
typical SAR image. The change in look angle usually 
increases with range, so t)0/t)p > 0. However, when the local 
terrain slope exceeds the look angle, an increase in look angle 
does not produce a corresponding increase in range. This is 
the layover geometry where o•O/o•p <= 0. 

Now consider the normal phase gradient due to the local 
curvature of the Earth (Figure A1, bottom). Let r o be the local 
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Figure 15. Unwrapped phase gradient difference for interferogram ERS1_22932 minus ERS2_3259 having a 
perpendicular baseline of 97 m. We determined that 3259 was contaminated with atmospheric waves, so a 
stack of three interferograms not containing 3259 was removed. The waves have characteristic amplitudes of 
10-15 mm and wavelength of 5 kin. 

Earth radius (i.e., the spheroid), 0 be the look angle, p be the 
range to the spheroid, and c be the distance from the satellite 
to the center of the Earth. Again, by the law of cosines we find 
[Joughin et al., 1996] 

r/- cos0- (c2 + p2_ ro 2) 
2pc 

(A6) 

Take the derivative of r/with respect to p to determine o•0/o•p. 
After a little algebra and using (A5), we find an expression for 
the phase gradient: 

cos/o-//coso-/ 8p A p sin 0 

After a little more algebra one arrives at an expression for the 
phase gradient in terms of the range, which has a slightly 
faster execution on a computer, 

0_•.0 __ 4•rB r/2)l/2 cos ct + sin ct r/-•- (A8) 8p Ap l-r/ 

expression for total phase versus range: 

<p =-4•B [(1-/72)1'2cos (x +//sin ix] (A9) 

Equation (A9) is used to form the Earth flattening correction. 
The interferogram is the product of reference C• and repeat C2 
single-look complex images [Li and Goldstein, 1990]; it 
provides an estimate of the total phase difference •b• - •b2. 
Removal of the largest phase term yields the real and 
imaginary parts of the Earth-flattened interferogram that are 
needed for the computation of the phase gradient (equation 
(1)): 

R + il = C1 C• e -•4• (A10) 

Precise orbit information (Appendix B) is required to 
determine the radius of the reference orbit c as well as the 

baseline parameters B and o•. The local radius of the spheroid 
(ro) depends only on latitude 

ro(rp) = ( cøs2(p sin2rp / -1/2 + 

a 2 b 2 ] 
(All) 

where r/is given in (A6). Using (A4), one can also derive an where a and b are the equatorial and polar radii, respectively. 
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Figure A1. (top) Geometry for interferometry above 
spherical Earth model. (bottom) A spherical Earth model is 
used in all of the interferometry equations. 

where 0o is the look angle to the spheroid (equation (A6)). 
The mapping of total unwrapped phase into elevation as a 
function of range is 

(r- ro)= -Apc sin 0o (qS- q5o) (A14) 
4tcB ro cos (0o- o0 

One should remember that the unwrapped interferogram does 
not provide the complete phase difference •p- •Po since there is 
an unknown constant of integration. Since the mapping from 
phase to topography varies significantly with range, an 
appropriate constant should be added to the unwrapped phase 
or a more accurate solution to set the local earth radius r o to the 
average radius of the topography in the frame. 

A3. Long Baselines 

A number of studies show that the correlation between two 

SLC images falls to zero as the baseline is increased toward the 
critical baseline [Li and Goldstein, 1990; Zebker and 
Villasenor, 1992; Werner et al., 1992; Gatelli et al., 1994]. 
While baseline decorrelation provides an upper bound on 
baseline length, we are concerned that the correlation given 
by 

y= [(c1c•l (A15) 
((C1C •Xc2 C•)) 1/2 

is a poor estimator of decorrelation of the surface, especially 
in regions of high phase gradient [Werner et al., 1996]. To 
compute the actual decorrelation of the surface, one must first 
remove all known phase gradients due to baseline geometry 
and topography. Equation (A5) is the general expression for 
the phase gradient. For a flat earth where the look angle equals 
the incidence angle, the phase gradient varies in a smooth and 
predictable manner across the scene: 

OO _-4tr B cos(O- 
3p •p tan 0 

(A16) 

A2. Mapping Phase into Topography - Spherical 
Earth 

One can use this formulation to relate Earth-flattened phase 
to topography. The actual radius of the earth (r) is usually 
greater than the radius of the spheroid (r,,), and this difference 
is geometric elevation. (Later we need to subtract the local 
geoid height to get true elevation.) The phase due to the actual 
topography can be expanded in a Taylor Series about ro: 

cp(r) = cp(ro) + •)•--•rO rO) (r- ro) + 1020 (ro) (r- ro) 2 +... (A12) 2 •)r 2 

Using (A4) and (A6), one can calculate the first two 
derivatives. It turns out that the second derivative is about 

(r- ro)/r times the first derivative (i.e., 2.7/6371 for our area), 
so we only need to keep the first two terms in the series. The 
first term is (A9) while the second term is 

arP (ro) =-4trro B cos (0o-O0 (A13) 
3r •pc sin 0o 

(Note this is (A7) in the limit as c >> p.) Now consider a 
perpendicular baseline B c such that the phase rate across the 
image is 2tr rad per pixel. If we assume that the pixel contains 
a uniform distribution of random scatters, then, with respect to 
the phase of the scatters in the reference image, the phase of 
the scatters in the repeat image will display -2n phase delay 
across the pixel, and the pixels will be uncorrelated. The 
familiar expression for this critical baseline is 

Bc = tan0 (A17) 
2Ap 

where zip is the pixel width, which is related to the bandwidth 
W of the radar chirp zip < c/2 W. 

Next assume that the baseline is one-half the critical value, 

so the phase rate across the image is tr rad per pixel, and that 
there is no surface topography. When one computes the corre- 
lation by averaging the interferogram over range pixels as 
described in (A15), adjacent pixels will have opposite phase, 
so the numerator in (A15) will sum to near zero. If the Earth- 
flattening correction is applied prior to computation of the 
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correlation, then the numerator in (A15) will return to the 
correct value of 0.5. Next consider a long-baseline inter- 
ferogram with rugged terrain so the slope is high and the mag- 
nitude of the phase gradient can approach n: rad per pixel; so 
again, the correlation (equation (A15)) will be low [Gatelli et 
al., 1994]. In this case, one could improve the estimated cor- 
relation by removing the phase due to the topography. 
Werner at al. [1992] have shown that for topographic recovery 
the trade-off between increasing phase amplitude with increas- 
ing baseline and decreasing correlation with increasing base- 
line leads to an optimum baseline which is about one-half of 
the critical baseline. Because the ERS satellites were not 

designed for interferometry, even this baseline length poses a 
number of practical problems. 

Appendix B: Precise Orbit, Baseline Estimation, 
and Image Alignment 

Precise baselines are computed from ERS-1/2 orbits 
providedby Scharroo et al. [1998]. These orbits have radial 
accuracy of 70 mm and cross-track accuracy of 210 mm, s o 
overall baseline accuracy is better than -300 mm for 
uncorrelated orbit error. Repeat orbits are never exactly 
parallel, so one must also account for the change in the 
baseline from the start to the end of the flame(s). Let s(t•) be 
the vector position of the satellite at some point along the 
reference orbit. To calculate the baseline, we simply search 
the repeat orbit for the closest approach s(t2). The total 
baseline length is 

images, but the timing accuracy of the radar echoes must be a 
fraction of a millisecond. Azimuth alignment of the repeat 
orbit with respect to the reference orbit is given by two 
parameters, the number of echoes to shift the repeat orbit at 
the start and end of the frame (Yshift)' Again, let s(t•) be the 
vector position of the satellite at the start of the frame of the 
reference orbit and S(t2) be the closest point on the repeat 
orbit. The Yshift is simply 

Yshift = (t2- to) PRF (B7) 

where to is the time at the start of the repeat frame and PRF is 
the pulse repetition frequency. The shift at the end of the 
frame is computed in a similar fashion, and this could be recast 
as a stretch. Note that to achieve one-fourth pixel alignment 
(-1 m) for ERS, the relative timing of the radar echoes must be 
accurate to 1/7000 ms -•, which is 0.15 ms. It is unclear 
whether the time recorded on the data tapes refers to the clock 
on board the spacecraft or to the time that the data were 
collected at the downlink site. While the difference is only 3- 
10 ms, the spacecraft will move 20-70 m during this interval, 
making subpixel along-track alignment difficult. 

Similarly, the range alignment can be determined by the 
parallel component of the baseline at the near range and far 
range. Let 00 be the look angle in the near range; then the 
range shift is 

Bsin (00-o•) 
Xshift = (B8) 

Ap 

B =Is(t2) - S(tl)l (B1) 

the vertical component of the baseline B v is the radial 
projection of B, 

ß S 1 (B2) BV=(S2- Sl) [•ll 

and the horizontal component is 

BH= +(B 2- BV2) 1/2 (B3) 

where the sign of the horizontal component must be deduced 
from the difference in the longitudes of the reference and the 
repeat orbits in relation to the look direction. Finally, the 
baseline angle o• is 

I(Bv I (B4) =tan- •,•mm! 

where Ap is the range pixel width. The shift at the look angle 
of the far range (Of) can also be computed, and this could be 
recast as a stretch parameter. 
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The parallel (Bll) and perpendicular (B_c) components of the 
baseline are given in the following equations, respectively: 

Bll = Bsin (0- o•) (B5) 

B_t_: Bcos (0-o•) (B6) 

where 0is the look angle (17ø-23 ø for ERS). The 
perpendicular baseline is used to scale the phase gradients to a 
common factor (equations (2) and (3)). 

The precise orbit information can also be used to align the 
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