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EPIGRAPH

Whence does one come
when he speaks, his eyes lighting up?
Before speech, all words are dead,
their legends blind.
No one comes from language,
the truth is what words dream.
One speaks, and language comes,

the light in one’s blood.

— Gemino H. Abad
The Light in One’s Blood
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ABSTRACT OF THE DISSERTATION

Marine Gravity Variations and the Strength of the Oceanic
Lithosphere with Bending

by

Emmanuel Soliman Mortel Garcia

Doctor of Philosophy in Earth Sciences

University of California, San Diego, 2016

Professor David T. Sandwell, Chair

The variations of the Earth’s gravity field at spatial scales ranging from
tens to hundreds of kilometers over the deep ocean basins can be measured with
satellite remote sensing of sea surface slopes. As the composition of the crust and
upper mantle comprising the oceanic lithosphere is highly uniform, these gravity
variations are closely linked to geological structures formed by tectonic processes.
One such process is the subduction of oceanic lithosphere into the planetary interior
at deep-sea trenches. The combination of a bending moment from the slab sinking
and a downward load from the overriding plate causes flexure of the lithosphere.
This flexure produces the prominence of the trench outer rise and the slope of the

outer trench wall. Extension of the plate at the outer rise is often accompanied by

xiii



the formation of faults, which can reduce the plate strength and hence the amount
of stress that the plate can support.

Data from recent radar altimetry missions of the CryoSat-2, Envisat and
Jason-1 satellites was reprocessed to improve the accuracy of a global marine grav-
ity field model. This reprocessing technique (“retracking”) refines the precision of
radar range measurements by a factor of 1.5. An approximate mathematical model
was formulated to enable retracking of radar waveforms collected by a novel in-
strument onboard CryoSat-2 in the synthetic aperture radar (SAR) mode.

A computational algorithm was developed for solving the thin plate flexure
equation for spatially varying rigidity in two horizontal distributions subject to
applied loads. The accuracy of the method was tested against analytic solutions.
This modeling technique was applied to the oceanic lithosphere for the trench flex-
ure case. Solving a parameter estimation problem generated flexural deformation
surfaces that fit marine gravity and bathymetry observations at trench locations
around the Pacific basin. Our results show that a flexure model in which the initial
strength of the plate depends on age but is allowed to decreased through inelas-
tic yielding is consistent with observations of the incoming lithosphere at Pacific

subduction zones.
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Chapter 1

Introduction

1.1 Outline of the Dissertation

This dissertation combines three studies concerning the oceanic lithosphere
but with each one emphasizing a different methodology: data collection and im-
provement, mathematical and numerical forward modeling, and inverse modeling
through parameter estimation. The first chapter describes the processing and anal-
ysis of satellite radar altimeter observations for mapping marine gravity anomalies
across the global ocean. The second chapter explains in detail a mathematical
formulation for thin elastic plate flexure with variable rigidity along with a com-
putational technique that finds accurate solutions rapidly. The third and last
chapter builds upon the contributions of the first two by leveraging an improved
data set and numerical models to solve a parameter estimation problem for the

bending of oceanic lithosphere at subduction zones.

1.2 Recovering the Marine Gravity Signal using
Satellite Altimetry

My co-authors and I developed in-house software tools for processing new
satellite data from the recent CryoSat-2 and Jason-1 radar altimetry missions to

recover the marine gravity signal. CryoSat-2 was originally designed for observing



ice in the polar regions with a novel instrument mode, but it also collects altimeter
return waveforms over the oceans. Meanwhile, Jason-1 was originally tasked for
physical oceanography applications but was placed in a non-repeat orbit for the
final phase of its mission, which is more ideal for geodetic mapping. We derived a
simple mathematical approximation to fit the CryoSat-2 waveforms and estimate
sea surface slopes. These slope measurements are then used to construct a global
marine gravity model. Such maps of marine gravity anomalies serve as a fundamen-
tal data set for interpreting geological features especially where no high-resolution
ship surveys are available, which is around 80 percent of the entire seafloor. The
gravity map also allows for the interpretation of tectonic structures buried beneath
sediment. The following chapters of this dissertation concentrates on the incoming
plate at oceanic subduction zones. At these locations, the negative anomaly at
the deep-sea trench is typically lower than -100 mGal, and the positive anomaly

associated with the outer rise is typically on the order of 50 mGal.

1.3 Solving Thin Elastic Plate Flexure Equations
with Analytic and Numerical Methods

In this chapter, we adapted an iterative solution method aided by Fast
Fourier Transform routines to solve the governing equations for static thin plate
flexure with the elastic thickness varying across two horizontal dimensions. This
mechanical model is applicable to geological settings where the bent plate has non-
uniform rigidity over the area that is deforming. We performed benchmark tests

of our software against textbook formulas as well as novel analytic solutions.

1.4 Modeling of Lithosphere Bending at Subduc-

tion Zones

The lithosphere is the outermost solid layer of the Earth, and it is comprised

of rigid units called plates which move with respect to each other. Depending



on the direction of this relative motion, plate boundaries can be one of three
types: divergent, transform, or convergent. When one of the plates at a convergent
boundary consists of oceanic lithosphere and has sufficient negative buoyancy to
sink into the mantle, then the plate is said to be subducting under the overriding
plate. Deep ocean trenches are the surface expression of subduction zones, and
across the entire Earth surface these have a combined length of approximately
40,000 kilometers.

At a trench, the lithosphere is bent well beyond its elastic limit. A simplified
description of the oceanic lithosphere strength is specified by a layered rheology
that is brittle near the surface, elastic in the middle, and ductile at greater depths.
We implemented a self-consistent numerical approach which computed an effective
elastic thickness based on the local curvature of the deflected plate surface and the
amount of yielding predicted by the brittle-elastic-plastic rheology.

Using this nonlinear flexure algorithm along with the improved gravity ob-
servations resulting from the work of Chapter 2 and an updated compilation of
high-resolution bathymetry, we modeled the topographic relief of the outer rise at
trenches and examined the impact of bending on extensional faulting at the trench
outer slope (see Fig. 1.4 for an illustration). The flexural deformation surface is
generated by solving a parameter estimation problem. We infer the applied load
distribution close to the trench axis required to compute forward models of plate
deflection by fitting marine gravity anomalies and shipboard bathymetry data.
Since the model allows for lateral variations in plate rigidity, it incorporates both
weakening effects from brittle deformation and strengthening due to cooling with
age. We generated numerous outer rise flexure models for regions outboard of
subduction zones around the Pacific basin, with seafloor ages ranging from 20 to
150 million years old. Our preferred models display decreasing elastic thickness
toward the trench, and the final values do not have a conclusive dependence on

the lithosphere age.
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Chapter 2

Retracking CryoSat-2, Envisat
and Jason-1 radar altimetry
waveforms for improved gravity

field recovery

Abstract

Improving the accuracy of the marine gravity field requires both improved
altimeter range precision and dense track coverage. After a hiatus of more than
15 yr, a wealth of suitable data is now available from the CryoSat-2, Envisat
and Jason-1 satellites. The range precision of these data is significantly improved
with respect to the conventional techniques used in operational oceanography by
retracking the altimeter waveforms using an algorithm that is optimized for the
recovery of the short-wavelength geodetic signal. We caution that this new ap-
proach, which provides optimal range precision, may introduce large-scale errors
that would be unacceptable for other applications. In addition, CryoSat-2 has a
new synthetic aperture radar (SAR) mode that should result in higher range pre-
cision. For this new mode we derived a simple, but approximate, analytic model

for the shape of the SAR waveform that could be used in an iterative least-squares



algorithm for estimating range. For the conventional waveforms, we demonstrate
that a two-step retracking algorithm that was originally designed for data from
prior missions (ERS-1 and Geosat) also improves precision on all three of the new
satellites by about a factor of 1.5. The improved range precision and dense cov-
erage from CryoSat-2, Envisat and Jason-1 should lead to a significant increase in

the accuracy of the marine gravity field.

2.1 Introduction

The remote ocean basins remain largely unexplored by ships (Wessel &
Chandler, 2011) and are opaque to direct electromagnetic sounding, and so satellite
radar altimeters are the tool of choice for global reconnaissance of the bathymetry
and tectonics of the ocean basins (Smith, 1998). Seafloor topography and crustal
geology are isostatically compensated (Watts 2001) and so generate gravity anoma-
lies primarily at wavelengths of 160 km and shorter (Smith & Sandwell, 1994) .
Anomalies of horizontal wavelength A\ are reduced in amplitude by an amount
exp(—2mz/A) when observed at a height z above the field’s source (Parker, 1973),
so the gravity signal of seafloor structure is insensible by gravity satellite missions
such as GOCE (z 250 km) or GRACE (z 450 km). Radar altimeters sense the
gravity field at the ocean surface so for a typical ocean depth of 4 km, the smallest
spatial scale recoverable is 6 km. The scientific rationale for improved gravity is
fairly mature and a set of papers related to this topic was published in a spe-
cial issue of Oceanography (Smith, 2004), entitled Bathymetry from Space. These
studies show that achieving an accuracy of 1 mGal at a horizontal resolution of 6
km would enable major advances for a large number of basic science and practical
applications.

Radar altimeters measure the height of the ocean surface, which to a first
approximation is a measure of gravitational potential. Gravity anomalies are the
vertical derivative of the potential and they can be recovered from the two hor-
izontal derivatives of the potential (i.e. sea surface gradient) through Laplace’s

equation; 1 mGal of gravity anomaly roughly corresponds to 1 purad (microradian)



of ocean surface slope. Therefore, achieving this 1 mGal threshold requires a radar
altimeter range having a precision of 6 mm over 6-km horizontal distance. This
precision could be derived from a single profile or a stack of repeated profiles.
The gravity signal is most accurately recovered by working with along-track sea
surface slopes rather than heights (Sandwell, 1984; Olgiati et al., 1995). Many fac-
tors that affect the absolute height accuracy of altimetric sea level (Chelton D.B.
& P.S, 2001) have correlation scales long enough that they yield negligible error
in along-track slope ((Sandwell & Smith, 2009), table 3). The error budget for
gravity recovery from altimetry is dominated by the range precision of the radar
measurement. This precision can be improved by a process known as 'retracking’
(Sandwell & Smith, 2005, 2009).

In addition to high-range precision, the accuracy of the global marine grav-
ity field depends on dense track spacing, which needs to be less than the de-
sired resolution of 6 km. Current gravity fields having accuracies of 35 mGal
(e.g. S&S V18 (Sandwell & Smith, 2009) and DNSCO08 (Andersen et al., 2010))
are based primarily on dense track coverage from 18 months of Geodetic Satellite
(Geosat) geodetic mission (GM) data collected in (Sandwell & McAdoo, 1990) and
12 months of European Remote-Sensing Satellite-1 (ERS-1/GM) data collected in
19951996. Between 1995 and 2010 seven radar altimeter missions flew, yet none of
them contributed significantly to marine gravity field mapping except in the Arctic
areas where the tracks converge (Laxon & McAdoo, 1994; Childers et al., 2001).
All were confined to ’exact repeat’ orbits which revisited the same ground points
every 1035 days, resulting in track spacings of 80 km and longer at the Equator,
too wide to usefully sample the A < 160 km field.

New altimeter data have become available in the last 2 yr that will have a
significant impact on marine mapping (Louis et al., 2010). CryoSat-2 was launched
into a 369-day orbit with an Equator spacing of 7.5 km in May 2010. The Envi-
ronmental Satellite (Envisat) mission was moved out of its 35-d exact repeat track
to fly a new drifting track in 2010 October, where it remained until its demise in
2012 April. The new track had a 30-day cycle, and combining the data from this

phase of the mission with ten years’ worth of data from the repeat phase leads to



dense coverage at high latitudes. In 2012 May, Jason-1 began a geodetic mission
in a 406-day, 7.7 km spacing at Equator orbit. Each of these missions collects
ocean data at a ~ 2 kHz pulse repetition frequency (PRF), thought to maximize
the number of statistically independent measurements per second (Walsh, 1974,
1982) , and about double the ~ 1 kHz PRF of Geosat and ERS-1.

The Synthetic Aperture Radar/Interferometric Radar Altimeter (SIRAL)
instrument on CryoSat-2 has three measurement modes (Wingham et al., 2006)
and switches among these autonomously as the spacecraft flies through a geograph-
ical 'mode mask’ (European Space Agency, 2013). The standard Low Resolution
Mode (LRM) is the conventional pulse-limited radar altimeter mode that has been
used by all previous radar altimeters (black lines in Fig. 1). This mode requires
a relatively low-data bandwidth and is ussed continuously over all ice-free ocean
areas. The new Synthetic Aperture Radar (SAR) mode is used over ocean areas
where sea ice is prevalent as well as a few small test areas (green lines in Fig.
1). In this mode the radar sends a burst of pulses every 11.8 ms. Within each
burst, the interval between pulses is 55 us long (ESRIN & University College Lon-
don, 2013; Galin et al., 2013). The returning echoes are processed coherently in
the along-track direction forming a 26-m long synthetic aperture. This results in
a footprint that is beam-limited and narrow (0.29 km) in the along-track direc-
tion and pulse-limited and broad (1.53 km) in the cross-track direction (Ford &
Pettengill, 1992; Raney, 1998). In addition, the echoes are sorted by Doppler fre-
quency, allowing for the formation of distinct radar-illuminated beams along the
satellite ground track. The locations of these beams can be described by a 'look’
angle measured with respect to nadir. The return signals from multiple beams can
be combined after performing range migration (Wingham et al., 2004), in a process
termed 'multilooking’, or 'multilook averaging’. There is a third mode of opera-
tion to measure elevation and cross-track slope over land ice surfaces where there
is significant topographic slope (red lines in Fig. 1). This SAR/Interferometric
Radar Altimeter (SARIN) mode utilizes the two antennas on CryoSat-2 to form a
cross-track interferometer. The echoes received by each antenna undergo Doppler

beam processing as in SAR mode, but the number of waveforms averaged is lower



due to the longer interval between bursts of 47.17 ms for SARIN mode. Both the
SAR and SARIN modes require a very high bandwidth data link to the ground
stations. CryoSat-2’s SAR and SARIN modes were designed for measurements of
sea ice and grounded ice, respectively (Wingham et al., 2006), but some data in
these modes have been collected over ocean areas (Giles et al., 2012; Galin et al.,
2013) for experiments which range from the observation of mesoscale sea surface
variability (Dibarboure et al., 2012) to the recovery of the short-wavelength gravity
signal (Stenseng & Andersen, 2012), with the latter being the main focus of the
present paper. If all else were equal, SAR-mode altimetry should be about two
times more precise than conventional altimetry (Jensen & Raney, 1998). However,
CryoSat-2’s implementation, in which the echoes from one burst are received be-
fore the next burst is transmitted, means that the instrument makes measurements
only 30 percent of the available time, which is suboptimal (Raney, 2012) (Raney
2011). Thus, the performance gain, if any, of CryoSat-2’s SAR and SARIN over
its LRM, needs to be studied.

This paper addresses the following questions: (1) could the range measure-
ments of these new altimeters be improved by the two-step retracking method
Sandwell & Smith (2005) developed for ERS-1? (2) Could this method, which was
developed for conventional 'pulse-limited’ altimetry, be adapted to the CryoSat-2
SAR and SARIN cases where the radar waveform is both pulse-limited and also
Doppler beam-limited? (3) When the method is applied to conventional waveforms
acquired by averaging 2-kHz PRF' echoes, how do the results compare with previ-
ous results obtained from the 1-kHz PRF instruments Geosat and ERS-17 (4) How
do the CryoSat-2 SAR and SARIN results compare with those of the CryoSat-2
LRM and other conventional altimeters? (5) How does two-step retracking affect
the spectral properties of the range measurements for the newer altimeters? This
analysis would determine how well our techniques recover the various spatial scales
that are present in the range signal.

As described above, we are only concerned with recovering the along-track
ocean surface slope by estimating the range from consecutive radar altimeter wave-

forms. Therefore, our waveform model is less complex than is required for applica-
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60° 120° -180° -120° -60° 0

Figure 2.1: Ground tracks of 26 months of CryoSat-2 altimeter data (2010 July
to 2012 August) in its three modes of operation LRM (black), SAR (green) and
SARIN (red). Tracks from different modes that overlap in certain areas are due to
changes in the geographical mode mask over the period of the mission. The area
where altimeter noise was estimated for each instrument (see Fig. 2.5) is outlined
by the white box, while the areas where the power spectra for sea level anomaly
were computed for low and high significant wave height (SWH) conditions are

outlined by the yellow and blue boxes, respectively. (see Fig. 2.7).
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tions where absolute ocean surface height is needed. For example, we can neglect
the effects of earth curvature, slow changes in antenna mispointing, and can use
a Gaussian approximation for the point target response. We make these approx-
imations for developing a simplified version of the analytical 'Brown’ model for a
conventional altimeter (Brown, 1977; Rodriguez, 1988; Amarouche et al., 2004).
Then, using the same approximations, we develop an analytic formula for the shape
of the SAR waveforms under the ideal condition of small radar mispointing an-
gle. Analyticity is a virtue because it allows one to obtain the partial derivatives of
least-squares model misfit with respect to model parameters, facilitating the search
for a best-fit model by GaussNewton iterative steps. We evaluate the deficiencies of
the analytical model through a comparison with a more fully developed waveform
model (SAMOSA Project, Salvatore Dinardo 2012, personal communication) that
also includes the effects of multilooking and radar mispointing (Wingham et al.,
2004; Cotton et al., 2010). In addition, we show good agreement between our SAR
retracking sea surface slope results and the slope derived from an independent
analysis of the same data (Labroue et al., 2012).

Next, we show the results from least squares analysis of our waveform mod-
els applied to data from the different CryoSat-2 modes. Then, in order to assess the
range precision of CryoSat-2, Envisat, and Jason-1 compared to ERS-1 and Geosat,
we gathered all the data available for regions containing acquisitions from each of
the CryoSat-2 modes. We quantified range precision by computing statistics on
the range values produced by our retracking algorithms. In addition, we computed
power spectral densities of the derived quantities such as sea level anomaly and sig-
nificant wave height. Throughout these analyses, we compare the results obtained
for data with and without two-step retracking. This allows us to discuss the ben-
efits of applying this method in reducing the noise levels in range. Finally, we put
our findings in context by examining the issue of correlated model errors during
waveform retracking. The insights we have gained in this study have implications
for understanding the contributions of each altimeter data set to the modelling of

the global gravity field, which will be the focus of future work.
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2.2 Waveform Models

A satellite altimeter senses the range to the sea surface by emitting a series
of frequency-modulated chirp signals designed to act like brief radar pulses. These
then interact with the ocean surface, and the received power of the reflected signal
is recorded by the satellite altimeter over a short observation window, spanning
400 ns of travel time, equivalent to 60 m of range. Averages of the power received
from many echoes are referred to as altimeter waveforms, and their shape may be
described mathematically using a multiparameter model that is a function of the
time elapsed since the signal transmission. The expected round-trip time varies
by order 100 us as the satellite moves around its orbit, and so the instrument
employs a target tracking scheme to keep the sea surface echoes aligned within
the observation window. Fitting a parametric model to the waveform is crucial
to improving the estimate of range beyond what was estimated by the on-board
tracker, and this parametric modelling is called 'retracking’.

The shape of the return radar waveforms collected by the altimeter can be
described as a function of the delay time 7, which is the sampling time ¢ referenced
to the arrival time of the waveform ¢y, such that 7 = ¢t —ty. The power versus delay
time for the model radar return pulse M (7) is given by the triple convolution of
the point target response P(7), the effective area of the ocean illuminated versus
time S(7), and the ocean surface roughness function G(7) (Brown, 1977; Hayne,
1980; Chelton et al., 1989; Rodriguez & Martin, 1994; Chelton D.B. & P.S, 2001;
Amarouche et al., 2004).

M(7) = P(1) % S(1) * G(1) (2.1)

The source time function has the form po [sin(77/7,)/(77/7,)]> because the pulse
is formed by deconvolution of a frequency modulated chirp, and pgy is the peak
power of the pulse. The bandwidth of the chirp is 320 MHz. This results in an
effective pulse length, 7,, of 3.125 ns, for an effective range resolution of the radar
of 0.467 m. To simplify the convolution integrals, it is customary to approximate

the source time function with a Gaussian function of the form
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T

2
P(7) = poexp (—275) (2.2)
where o), is the standard deviation of the Gaussian function that models the point
target response, and is related to the effective pulse length by o, = 0.5137,
(Amarouche et al., 2004). This approximation leads to a range bias of about 1
cm and could be corrected using a lookup table (Thibaut et al., 2010). We do
not apply this correction because the slope of this correction will be much less
than 1 prad. The roughness of the ocean surface due to ocean waves is also well

approximated by a Gaussian function (Stewart, 1985).

2

G(r) = ﬁ exp (—%) (2.3)

where o0}, is related to the significant wave height hgwg by

hswi
2.4
2c ( )

where ¢ is the speed of light. The order of the triple convolution given in eq.

Op =

(2.1) is unimportant so we begin by convolving the Gaussian approximation to the

source function with the Gaussian wave height distribution resulting in

P(r) % G(r) = PG(r) = 0025027 exp (-%‘2) (2.5)

where 0* = o} + 0.

We note that for the purpose of recovering gravity from sea surface slopes
the absolute scaling of eq. (2.5) is arbitrary, as we do not seek to recover calibrated
values of the radar backscatter. The final convolution of the Gaussian pulse with
the effective area of the ocean illuminated by the radar determines the shape of
the model waveform.

The treatment that we present below to obtain the flat surface response
S(7) is meant to illustrate that the difference between the pulse-limited and SAR
mode waveform models originates from the contrast in the geometries of the areas
effectively illuminated by the radar pulse on the sea surface. To facilitate this,

we will make the assumption that the diameter of the pulse-limited footprint is
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much less than the diameter of the antenna beam pattern so the variation in
antenna power within the pulse-limited area is small and can be approximated as
a constant. This approximation will break down when the off-nadir pointing angle
reaches a large fraction of the antenna beam angle. However, multiplying an ad
hoc exponential decay function to the effective illuminated area results in the same
functional form as a derivation of the flat surface response that takes into account
the finite width of the radar antenna gain pattern, up to within a multiplicative
factor (Appendix 2.A). Since we are most interested in measuring the arrival time
of the return pulse, our analysis is not concerned with the amplitude of the pulse
and thus our methods are sufficient for the sole purpose of measuring sea surface

slopes.

2.3 Simplified Brown Model

Over the ocean the CryoSat-2 altimeter is operated in two modes (Fig.
2.2). The SIRAL antenna is slightly elliptical, but for LRM we consider the pulses
as having approximately spherical wave fronts. The wave front reflects from an
annulus on the ocean surface having an area A(r) = 27rdr, where r is the radius
of the annulus and dr is the width of the annulus. The approximate radius of the

annulus versus time is given by (Walsh et al., 1978; Hayne, 1980; Stewart, 1985)

r(r) & (@)m (2.6)

K

in which h is the altitude of the radar antenna above the surface, and c¢ is the
propagation speed of the radar pulse. The factor kK = 1 + h/R accounts for the
curvature of the earth, R Rodriguez (1988). While the radius of the annulus
increases as the square root of time, the thickness of the annulus per unit time
decreases as the square root of time. This can be seen by approximating the

thickness of the annulus dr and by the rate of growth of the radius of the encircling

(%) v (2.7)

ring
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LRM SAR
dr
W
S=2nr dr S=2w dr

Figure 2.2: Interaction of a radar pulse with a flat surface. Area illuminated in
standard LRM mode after the arrival of the pulse (left-hand side). Area illuminated
by the synthetic aperture radar (SAR) method where w is the effective width of
the focused beam in the along-track direction (right-hand side).
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and so therefore the area of the annulus as a function of 7 is uniform after the

arrival of the pulse:

S(r) = 7T—hCH(T) (2.8)

K

The final step in generating the model waveform is to convolve the effective area

versus time with the Gaussian pulse function

M(7) = P() * G(1) * S(7) = %\/ﬁpo 7exp {_

— 00

T—7
202

} H(dr  (2.9)

Integrating (2.9) using formula 7.4.2 in Abramowitz & Stegun (1964) results in the

familiar ‘Brown model” (Brown, 1977) waveform model

2
M(r) = hcwig\/_

1+ erf(n)] exp(—at) = é [1 + erf (#)} exp (—ar)
(2.10)
where A is a scaling factor similar to a peak amplitude and n = 7/ V20. The expo-
nential decay accounts for the antenna’s gain pattern under the assumption that
the line of maximum antenna gain makes an angle with nadir (the 'mispointing’
angle) which is small compared to the antenna’s beam width (Rodriguez, 1988;
Amarouche et al., 2004). Also assumed in (2.10) is that the antenna gain pattern
is circular. This is correct for all altimeter satellites except CryoSat-2, which has
a slightly elliptical antenna pattern; however, CryoSat-2 conventional mode wave-
forms can be adequately approximated by assuming a circular pattern having a
beam width squared equal to the harmonic mean of CryoSat-2’s actual major and
minor beam widths squared (Wingham & Wallis, 2010; Smith & Scharroo, 2011;
Smith et al., 2011).
The partial derivatives of the model with respect to tg, o, and A are ap-

proximately

(2.11)
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Figure 2.3: Brown model waveform including the exponential approximation to
the trailing edge decay for a 2 m SWH (upper). Model derivatives with respect
to arrival time (dashed) and rise time (dotted) are also shown. SAR model wave-
form for a 2 m SWH and including the exponential decay of the trailing edge

approximating the antenna gain effect. Model derivatives are also shown (lower).

oM A )
= —mn exp(—n°) (2.12)
oM M

respectively. Note that to simplify these expressions and the least squares analysis
we have assumed that the slope of the exponential decay with respect to time is
smaller than the more important leading terms. Plots of this simplified Brown

model and its partial derivatives are provided in Fig. 2.3 (upper).
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2.4 Approximate SAR Model

A similar approach is used to develop the waveform shape for the SAR
model as well as its derivatives with respect to the model parameters. When
CryoSat-2 operates in its SAR mode, the PRF is high enough to allow Doppler
beam sharpening. Processing a group of 64 echoes yields 64 Doppler beams, fanned
out in the direction of flight (Raney, 1998). One of these beams looks at nadir
while the others look fore and aft; each subtends a width w along the ground. By
selecting data from a particular beam, one may select slices through the annulus
sampled by the radar pulse (Fig. 2.2b). Here, we will develop a simple expression
approximating the mean power expected from only the nadir-looking beam having
an effective width w in the along-track direction (Raney, 1998; Wingham et al.,
2004). An assessment of the effects of using a nadir-only beam model to fit a
multilooked waveform with small off-nadir pointing angle is provided in Appendices
2.B and 2.C. In this case the area of the illuminated ocean surface is approximately
given by

dr

S(t) = 2’LU£H(’T> (2.14)

when w < r 2.2. So by again invoking eq. (2.7), the area versus delay time

function is given by

S(r) = w <@) v H(r) (2.15)

RT

The model return waveform is the convolution of the Gaussian pulse with this area

versus time function

o RTT

M) = P 5 w0 =20 (2) /fp [_g]

—00

(2.16)

This integration, including an approximation to the CryoSat-2 antenna beam pat-

tern, is provided in Appendix 2.A. The final result is
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M(T) = Ao~ exp (—4%‘2) D_y <_£> exp (—ar) (2.17)

where D,u(z) is the parabolic cylinder function of order v and argument z.
As in the case of the Brown model, we would like to compute the partial
derivatives of the model with respect to tg, o, and A. The details are provided in

Appendix 2.A, but we summarize the results here:

M = Ao~ exp <—izz> D_y5(2) exp (—aT) (2.18)

aa—tj‘f — _Aotexp <—;lz2) Dyja(2) (2.19)

%—ZZI = — Ao /32 exp (—iz2> [%D_l/g(z) — 2D19(2) (2.20)

%—Aj = % (2.21)

where z = —7 /0. As in the case of the Brown model we simplify these expressions

by assuming that the slope of the exponential decay with respect to time is smaller
than the more important leading terms. Plots of this SAR model and its derivatives

are provided in Fig. 2.3 (lower).

2.5 Least Squares Analysis

The standard approach in operational oceanography is to retrack the wave-
forms of conventional altimeters by fitting a mathematical model as in eq. 2.10.
One such technique has been referred to as MLE (Amarouche et al., 2004; Thibaut
et al., 2010). If the retracker fits four unknown parameters A - amplitude, ¢, - ar-
rival time, o -rise time and « - trailing edge decay, it is commonly called "MLE4’,
while if the trailing edge decay parameter « is held fixed, then it is called "MLE3’.
In prior work (Sandwell & Smith, 2005) and in this study, we use a least-squares
approach, which we call 3-parameter retracking. For our algorithm, the criteria

for convergence depends on the following misfit function
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N 2

P, — M(t;;tg,0, A

MZE( %0 )> (2.22)
i=1 ’

where the summation is over N waveform power samples. The waveform model
M is evaluated for every t;, and a starting model is calculated from some initial
estimates AY; o and ¢ for the fitting parameters. The best fitting model is found
through successive iteration, and at each iteration the differences between the new
parameter values A7t1 71 and #™ and the current values A7, 07 amd ) are found

by solving the following linear system:

[ P — M
Py, — M}
| Py — M3, |
%M(tl;t%,aj,Aj) C%M(tl;tf),aj,Aj) B%M(tl;t%,aj,flj) Gy
. . : o — o
St _ g
I o AT A
_%M(tN;té,aj,A]) %M(tN;t{),a],AJ) %M(tN;té,aj,A])_
(2.23)

In the case of non-uniform weights, (2.23) should be modified by dividing
both sides of the i-th equation by the weights W;. The expressions for the partial
derivatives of the model with respect to the parameters are given by eqs (2.11)-
(2.13)) for the conventional pulse-limited waveform, and eqs (2.19)-(2.21) for the
SAR mode waveform. The partial derivatives are then evaluated for the set of
parameter values at each step j and at every gate i. The weights W in eq. (2.22)
represent the uncertainty in the recorded waveform power, and for the conventional
pulse-limited waveforms we use the functional form

P, + R)

_
Wi= (2.24)

N
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where K is the number of statistically independent return echoes averaged to pro-
duce a 20 Hz waveform and F is a power offset value. It is necessary to account for
the offset P as waveform values should contain a background noise level caused by
temperature-dependent thermal noise in the receiver; the overall level is set by the
engineering characteristics of each altimeter and varies with the automatic gain
control setting. We arrive at the functional form of eq. (2.24) because theoret-
ical considerations (Brown, 1977) show that since the radar amplitude follows a
Rayleigh distribution, then the standard deviation in the signal component of the
waveform value should be proportional to the mean of this component.

Two previous studies (Maus et al., 1998; Sandwell & Smith, 2005) showed
that for weighted 3-parameter retracking, there is a strong covariance between
the estimation errors in the arrival time and rise time parameters resulting in a
relatively noisy estimate of arrival time. Moreover, if the rise time parameter is
held to a fixed value (derived from about 40 km of along-track waveforms), then the
results of Monte Carlo simulations show that the noise in arrival time is reduced by
36 percent, or a factor of 1.57 (Sandwell & Smith, 2005) (Fig. 2c). We refer to this
approach as 2-parameter retracking. As shown below, while there are significant
benefits in terms of range precision by reducing the number of parameters for
the CryoSat-2 LRM and other conventional altimeter data, there seems to be no
benefit in applying this approach to the SAR-mode data.

In this study we sought an optimal algorithm for retracking CryoSat-2 LRM
and other conventional waveforms by fitting (eq.2.10) and CryoSat-2 SAR wave-
forms by fitting (eq. 2.18). Our optimization of the method is based on trial
and error using tens of long ocean tracks and selecting the best method based on
minimizing the median absolute difference between the along-track ocean slope,
filtered at 18 km wavelength, and the slope of the ocean surface extracted from
the EGM2008 global gravity model (Pavlis et al., 2012). The parameters we tuned
are the trailing edge decay rate «, the power offset P in eq. (2.24), and the number
of waveforms to assemble into a single least-squares analysis.

The « value should depend on the antenna beam width, the altitude of the

orbit, and the square of the off-nadir pointing angle. Height variations around the
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orbit have negligible effect on o and the only important source of variation in « is
variation in the spacecraft mispointing. Geosat had large mispointing excursions
(order 0.7 °, a large fraction of its beamwidth) because it was only passively sta-
bilized, but the other altimeter spacecraft actively maintain nadir pointing to a
high enough accuracy that we chose to use a constant value for for these other
satellites, for two reasons. First, allowing the parameter to vary rapidly along a
satellite track will increase the noise in the range precision, particularly in areas of
large wave height (Smith & Scharroo, 2011). Secondly, we found that the rate of
change of mispointing angle is usually very small, so that any range bias we might
introduce by assuming a constant « will introduce negligible error in the along-
track sea surface slope required for gravity. Thus, for our purpose a constant « is
a good assumption, although it might not be if absolute accuracy in ocean height
were a requirement (Thibaut et al., 2010). The « values we found, expressed in
units of (waveform range gate sample)-1, are: 0.022-ERS-1; 0.090-Envisat; 0.0058-
Jason-1; 0.0130-CryoSat-2/LRM; 0.0149-CryoSat-2/SAR (0.00744-for the baseline
B product). For Geosat, a mean value of 0.006 was used to initialize a best-fit
search for a.

The second type of tuning was related to the weight function used in the
least-squares analysis. The parameters in eq. (2.24) were tuned to achieve the
best fits between along-track slope and EGM2008 slope for numerous profiles. It
is interesting that all the Brown-type waveforms (Geosat, ERS-1, Envisat, Jason-
1 and CryoSat-2/LRM) required a significant downweighting of the higher power
data (as expected from the Rayleigh distribution theory) while the CryoSat-2 SAR
waveforms had best fits when a uniform weight was used, meaning that instead of
eq. (2.24) we simply set W; = Py/K'/? for all values P; in the waveform window
considered.

The third type of tuning is the number of 20 Hz waveforms to be used
in each least-squares adjustment. In a previous study involving ERS-1 (Sandwell
& Smith, 2005) we found optimal along-track slope fits when three waveforms
were used and the two outer waveforms were given % the weight of the central

waveform. This approach proved optimal also for CryoSat-2/LRM and SAR and
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we simply adopted the same weighting scheme for Envisat and Jason-1. Note that
Geosat waveforms are provided at 10 Hz and we found that fits to single waveforms
provided optimal results. Later when the 20-Hz noise levels of each altimeter are
presented, the Geosat values will be multiplied by a factor of 1.41 to account for
the reduced number of independent waveforms in the least-squares adjustment.
Examples of fits to the three modes of CryoSat-2 data are provided in Fig.
2.5. The left plot shows fits to the LRM data using the 2-parameter Brown model.
As described in the Sandwell & Smith (2005) study, a two-step retracking approach
was used. The data are assembled into continuous tracks of 20-Hz waveforms. A
three-parameter retracking is performed during the first step; then the rise time
parameter is smoothed over a %—wavelength of 45 km and then the pass is retracked
a second time using this fixed value of rise time. A similar approach is used for the
SAR and SARIN data. In all cases the model and the data show good agreement
with one notable exception where the 'toe’ (the onset of the rise of the leading
edge) of the SAR and SARIN waveforms is not well matched by the model. This
toe is due to multilooking the SAR waveforms to improve their signal-to-noise ratio
and is not properly fit by our model, which was derived by considering the nadir-
looking Doppler beam only. The adverse effects of fitting a multilooked waveform
using a single-look model are evaluated in Appendix 2.B and 2.C. The three lower
plots in Fig. 4 show the waveform residuals for 100 waveforms in each case. As
expected the misfit to the LRM waveform is greater where the power is greater
and there is no systematic variation to the misfit. The misfit to the SAR waveform

shows a prominent leading edge signature cause by a poor match at the "toe’.

2.6 Noise and Coherence

To assess the noise levels of the altimeter range data we perform a statistical
analysis on the retracked range values. Meanwhile, to estimate the along-track
spatial resolution of these measurements we carry out a cross-spectral calculation
on data from repeating tracks. For the first approach, we compute the standard

deviation of the 20 Hz range estimates about the 1 Hz mean (Cheney & Coast,
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Figure 2.4: Least-squares fit of model waveforms to LRM, SAR and SARIN data.

Residuals shown below are misfits from 1000 waveforms to reveal scatter as well as

systematic variations (red). The SAR model single-look waveform does not match

the 'toe’ in the waveform data resulting in a systematic misfit (vertical grey line).
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1992; Gommenginger et al., 2011). Rather than simply using the mean, we first
removed a reference geoid model (EGM2008) because high geoid gradients within
the 1-s time frame can increase the standard deviation. We selected a rectangular
region in the North Atlantic such that the CryoSat-2 passes collected in the western
half were mostly in LRM mode, while the eastern half contained SAR-mode data.
We plotted this 20 Hz estimate versus SWH (white box in Fig. 2.1). We did the
same analysis for Geosat, ERS-1, Envisat and Jason-1, as shown in Fig. 2.5. This
was done for 3-parameter (green dots) and 2-parameter (blue dots) retracking. The
solid smoothed curves are median averages of these estimates in 0.4 m SWH bins.
Noise estimates of each altimeter at 2 m and 6 m SWH are provided in Table 1. To
compare the statistics from our 3-parameter retracking to the MLE4 data provided
with the standard Jason-1 Geophysical Data Record (GDR; (Picot et al., 2012)),
we plotted the 20 Hz standard deviations provided in the GDR (red dots Fig. 2.5)
and also computed the median of the 20 Hz noise in 0.4 m SWH bins. The GDR
noise level is slightly lower than our 3-parameter noise level for SWH less than 3 m
and greater at larger SWH. We note that the altimeter range and SWH estimated
by the retracker during Jason-1 data processing chain are corrected using look
up tables. These corrections are meant to alleviate the errors in range and SWH
that are introduced by approximating the point target response by a Gaussian
function. Note that the Jason-1 noise level for our 2-parameter retracked data is
significantly lower than the GDR noise level showing that this two-step retracking

approach reduces range noise at the very short wavelengths.
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Figure 2.5 (previous page): Standard deviation of retracked 20-Hz height estimates
with respect to EGM2008 for all altimeter data considered in this study (Geosat,
ERS-1, Envisat, Jason-1 and CryoSat-2 LRM, SAR and SARIN). The data are
from a region of the North Atlantic with relatively high sea state, white box in
Fig. 1 except the SARIN data are from the South Atlantic. Green dots are from 3-
parameter retracking while blue dots are from 2-parameter retracking (every 10th
point plotted). The red dots on the Jason-1 plot are the 1-Hz noise estimates
provided with the GDR (Picot et al., 2012). They show good agreement with
the 3-parameter noise estimates from our retracking code. The thick lines are the
median of thousands of estimates over a 0.4 m range of SWH. Note the 2- and
3-parameter results are nearly identical for the CryoSat-2 SAR data. The 10-Hz
Geosat estimates were scaled by 1.41 to approximate the errors in at a higher

sampling rate of 20 Hz.

As expected, the noise level of the SAR data is between 1.8 and 1.3 times
better than the other altimeters when all retracking is done using three parameters.
For 2 m SWH, our computed value of 49.7 mm differs by less than a 1 mm from
those obtained using different SAR waveform retracking approaches (Giles et al.,
2012; Gommenginger et al., 2012). This result is somewhat less than the expected
factor of 2 improvement in range precision based on an engineering analysis (Jensen
& Raney, 1998; Raney et al., 2003). There are two possible reasons why we have
not achieved this factor of 2 improvement. First, it is possible that our fits to the
SAR waveforms are suboptimal because our model does not include the toe-signal
caused by multilooking. Secondly, the estimated factor of 2 improvement was based
on an open-burst SAR design where the pulsing of the radar was continuous, rather
than in discrete bursts (Raney, 2012). In the case of CryoSat-2 the radar operates
in a closed-burst mode where 64 pulses are emitted and then pulsing stops until the
echoes of these 64 have been recorded; this causes the radar to operate only about
1/3 of the time, and is a suboptimal design (Raney, 2012). The more interesting

result is that in the case of 2-parameter retracking, the reduction in noise level
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Table 2.1: Standard deviation of retracked 20-Hz height estimates with respect to
EGM2008. The data are from a region of the North Atlantic with relatively high
sea state. The values represent the median of thousands of estimates over a 0.4 m
range of SWH. The 10-Hz Geosat estimates were scaled by 1.41 to approximate
the errors at the 20-Hz sampling rate. Note in all cases except for the CryoSat-2
SAR and SARIN modes, the 3-PAR to 2-PAR noise ratio is close to the 1.57 value
derived from a least-squares simulation (Sandwell & Smith, 2005) (Fig. 2c).

2 m SWH 6 m SWH

3-PAR | 2-PAR | 3-PAR | 2-PAR
Altimeter (2m) | 2m) | (6m) | (6 m)
Geosat 88 57 1.54 105.4
ERS-1 93.6 61.8 1.51 111.8
Envisat 78.9 51.8 1.52 88.6
Jason-1 75.9 46.4 1.63 64.2
CryoSat-2 LRM 64.7 42.7 1.51 1.7
CryoSat-2 SAR 49.5 49.7 0.996 | 110.9
CryoSat-2 SARIN | 1385 | 138.7 | 0.998 | 148.6

of the SAR waveforms is small while for the non-SAR data the noise reduction
is large and very close to the expected noise reduction of 1.57 based on a Monte
Carlo simulation (Sandwell & Smith, 2005) (Fig. 2c). Indeed, for 2 m SWH the
noise of the CryoSat-2 LRM is lowest (42.7 mm), followed by Jason-1 (46.7 mm)
and then CryoSat-2 SAR (49.7 mm). At 6 m SWH Jason-1 has the lowest noise
level of 64.2 mm followed by LRM (71.7 mm), Envisat (88.6 mm) and then SAR
(110.9 mm). The relatively poor performance of the SAR-mode data at the larger
wave heights could reflect the increase in arrival time error with increasing SWH
shown in Fig. 2.B2.

It is notable that the noise levels of the new altimeters (Envisat, Jason-1
and CryoSat-2) are lower than the noise levels of the older (Geosat and ERS-1)

altimeters. This is due to the nearly factor of 2 increase in PRF in the newer
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altimeters. At a PRF of ~ 2 kHz, about 100 returning echoes are averaged to
construct one waveform if the sampling rate is set at 20 Hz, whereas around 50
waveforms are included when the PRF is at ~ 1 kHz. This increase in averaging
reduces noise in the recorded waveforms, and hence in the range estimates as well.

Another finding is that the ratio of 3-parameter retracking noise to 2-
parameter retracking noise for conventional pulse-limited data is largely indepen-
dent of altimeter. Our calculations of this noise reduction due to the two-step re-
tracking process are very close to a previously published value (Sandwell & Smith,
2005) (Fig. 2c) based on a least-squares simulation (Table 2.1). Together with our
other results in the current study, this consistency of the noise ratio in two-step
retracking implies that the technique confers the same benefits regardless of the
PREF, at least for a pulse-limited altimeter.

A second common approach to noise analysis is cross-spectral coherence
analysis of repeating altimeter profiles (Marks & Sailor, 1986). Through this anal-
ysis we obtain the signal-to-noise ratio as a function of wavelength. In our case, the
signal is the time invariant gravity field which is common to the repeating profiles
and the noise is caused by retracker noise and time varying environmental noise.
The value of coherence is close to 1 at longer wavelengths where the signal dom-
inates, and is small (<0.2) where the noise dominates (Bendat & Piersol, 2011).
This technique has been used to characterize the shortest wavelength resolvable
in the along-track altimeter data (Marks & Sailor, 1986), an important factor for
designing low-pass filters to be applied to the 20 Hz data prior to gravity field
construction (Yale et al., 1995). A conservative estimate of the effective resolution
of the along-track data is given by the wavelength at which the coherence level is
0.5.

We selected ground tracks within a region in the North Atlantic Ocean
and assembled profile pairs that repeat to within about 1 km. This set of tracks
included both LRM and SAR mode data, and we performed the coherence analysis
separately for each mode. For data from both modes, results from 2-parameter
retracking were used to compute the along-track slopes. To obtain statistically

significant coherence estimates we used Welch’s modified periodogram method on
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Figure 2.6: (a) Coherence versus spatial wavenumber (wavelength) for repeat
along-track slope profiles in the North Atlantic (white box in Fig. 2.1). The
LRM/SAR coherence falls to a value of 0.5 at a wavelength of 27/26 km and a
value of 0.2 at a wavelength of 22/20 km. (b) Power in SWH versus wavenumber

(wavelength) for 3-parameter retracking of LRM (solid) and SAR (dashed).

multiple passes. The data were pre-whitened by taking the along-track derivative,
resulting in along-track slope. The resulting coherence curves are shown in Fig.
2.6. We found that LRM slope acquisitions have a resolution limit of 27 km, while
for SAR, this was at 26 km. In comparison, previously published values using
a similar analysis in another area of the Atlantic found a 33-km resolution for
Geosat, and 33-km resolution for ERS-1 (Yale et al., 1995). These results suggest
that the spatial resolution of CryoSat-2-derived gravity will be at least 1.2 times
better than previous models.

The power spectrum of the SWH estimated in LRM and SAR mode data
has a change in trend at a wavelength of 45 km (see Fig. 2.6b). This reflects
the wavelength where the noise in the estimation of SWH is larger than the SWH
signal. In the case of ERS-1 the break in the spectrum occurred at ~ 90 km
(Sandwell & Smith, 2005). Therefore, for our previous processing algorithms for
the older altimeter data, we had used 90 km as the filter wavelength to smooth the
SWH before 2-parameter retracking. However, our current analysis suggests that
we should do less smoothing (45 km wavelength) for the CryoSat-2 data because
the SWH is more accurately determined. This will provide better results in areas

where there is a spatially rapid variation in swell height.
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A previously unexplored issue related to this two-step retracking method is
what part of the wavelength spectrum benefits most. This analysis was prompted
by a study by Boy et al. (2012) where spectra of all altimeters show elevated power
spectral density between the wavelengths of 45 and 5 km, which has been called a
spectral 'bump’. We explored this issue in two ways. First, we computed the power
spectra of sea level anomaly (SLA) from Jason-1 (i.e. sea surface height EGM2008)
for thousands of profiles in two large regions of the South Pacific (Fig. 2.7). The
first area has generally high SWH and high mesoscale variability (black curves in
Fig. 2.7) while the second area has generally low SWH and low mesoscale variabil-
ity (blue curves in Fig. 2.7). The dashed curves are spectra for the 3-parameter
retracked data while the solid curves are the spectra for the 2-parameter retracked
data. In both cases the 3-parameter data has a higher power for wavelengths
shorter than about 100 km. We believe this decrease in power in the 10 — 100-km
wavelength band is caused by the lower noise level of the 2-parameter retracker
with respect to the 3-parameter retracker. This same benefit was demonstrated us-
ing Geosat altimeter data (Sandwell & Smith, 2009) and the geographic variations
in noise improvement are provided in Fig. 3 of that study; the noise reduction is
greatest in areas of high SWH.

To further demonstrate the noise reduction for the 2-parameter retracker
relative to the 3-parameter retracker for all the newer altimeters, we constructed
power spectra of differences between the output from the two retrackers. These re-
sults are shown in Fig. 2.8. All the altimeters show elevated power spectral density
between the wavelengths of 45 and 5 km, which corresponds to the spectral "bump’
(Boy et al., 2012). The fall-off in the difference spectra for wavelengths greater than
45 km simply reflects the wavelength over which the SWH was smoothed between
the 3-parameter and 2-parameter retracking. At longer wavelengths, both retrack-
ers provide the same height measurement because the profiles contain the same
SWH signal. At shorter wavelengths there is a significant filtering of the SWH, so
the retrackers provide very different output. At the shortest wavelength end of the
difference spectrum between 10 and 3 km the outputs from the two retrackers also

become similar. We speculate that this is due to the finite pulse-limited diameter
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Figure 2.7: Power spectra for sea level anomaly (sea surface height minus
EGM2008) as computed from Jason-1 data for two regions in the South Pacific.
Dashed curves are 3-parameter retracking and solid curves are 2-parameter retrack-
ing. Black curves are from a region of generally high sea state and high mesoscale
variability (longitude 190280, latitude 55 to 35, 5500 passes of length 2048). Blue
curves are from a region of generally low sea state and low mesoscale variability
(longitude 210285, latitude 25 to 4, 4200 passes of length 2048). Inset histograms
show differences in sea state characteristics. The rapid spectral roll-off at 10 km
wavelength is caused by a low-pass filter applied to the 20 Hz data prior to resam-
pling at 5 Hz. The spectral ’bump’ is more apparent for the 3-parameter retracked
data than the 2-parameter retracked data. The spectra are smooth because they

each represent about 10 million, 5 Hz observations.
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Figure 2.8: Power spectra (20 Hz) of the difference in along track height between
passes retracked with the 3-parameter model and the 2-parameter model after
smoothing the SWH over a 1/2-wavelength of 45 km. There is a ’bump’ in the

spectrum between 5 and 45 km where most of the noise reduction occurs.

of the radar footprint. We note that the shortest wavelength available in marine
gravity models derived from altimetry is about 12 km so this finite footprint size
is not yet a limitation on gravity field resolution. This analysis of the reduction
in the spectral bump caused by SWH smoothing as well as the reduction in the
correlation between residual height and SWH deserved further investigation but is

somewhat beyond the scope of this paper.

2.7 Correlated Model Errors

One of the unexpected results from our analysis of the CryoSat-2 LRM
and SAR waveform data is that the SAR data show no noise reduction when the
two-step retracking approach is used. To investigate why this happens in the least

squares fitting one can examine the 3 x 3 covariance matrix that is constructed
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from the partial derivative of the model waveform with respect to the three model
parameters A, ty and o. The results are provided in Table 2.2 where the covariance
values were scaled so the arrival-time variance is one. The analysis was done for
both the LRM and SAR modes for SWH of 2 and 6 m. In general the SWH is
more accurately estimated for the SAR than for the LRM (i.e. the o-0 term of
the covariance matrix). More important the cross correlation between o and 7 is
relatively large for the LRM (0.27 at 2 m SWH and 0.43 at 6 m SWH). In contrast
the cross correlation between and t0 is smaller for the SAR (0.11 at 2 m SWH
and 0.19 at 6 m SWH).

Table 2.2: LRM and SAR least-squares covariance

LRM SAR

0.0678 0.1324 0.1379 | A | 0.1505 0.0714 0.2348
2 m - 1.0000 0.2694 | t, - 1.0000 0.1115
- - 1.3947 | o - — 1.0644

A t o A t o
0.0441 0.1381 0.1392 | A | 0.0662 0.0749 0.1682
6 m - 1.0000 0.4356 | to - 1.0000  0.1903
- - 1.3489 | o - - 1.0832

In hindsight, one might have expected these large correlations between o
and 7 in LRM (found previously for ERS-1 by Sandwell & Smith (2005)) and
smaller correlations in SAR from an inspection of the partial derivatives with
respect to these parameters shown in Fig. 2.3. It seems clear that the two partial
derivatives are more dissimilar in shape for SAR mode than in the LRM case, and
so the SAR model fitting should be able to better discriminate between the two
parameters. The two-step retracking of Sandwell & Smith (2005) was developed
to overcome the problem of this correlation in ERS-1 (i.e. conventional, 'LRM’)
data. It appears that it is not needed for SAR data. One may speculate that the

greater sensitivity to the model parameters in SAR data is ultimately due to the



35

waveform shape having both a leading and a trailing edge that changes with o,
whereas in our formulation the slope of the trailing edge of the conventional LRM

waveform is unaffected by this parameter.

2.8 Conclusions

To measure marine gravity anomalies at an accuracy under 1 mGal, the
error in the along-track slopes from the altimeter profiles must be about 1 urad, or
there must be enough repeated tracks to achieve the 1 urad accuracy. This study
compiles several contributions towards this goal.

We have shown that a simple analytic function, which we derived to model
CryoSat-2 SAR-mode waveforms, may be used to estimate along-track sea surface
slope. This is in spite of the fact that the model does not account for the multilook
averaging applied in assembling the SAR waveforms. We then calculated the range
precision at 20 Hz for a large set of altimeter profiles collected in SAR mode and
found that it was almost two times better than earlier noise levels for ERS-1 and
Geosat.

Two-step retracking was originally developed specifically for ERS-1 data
(Sandwell & Smith, 2005), but we have established that this method also results
in a factor of 1.5 improvement in range precision for pulse-limited altimetry wave-
forms for other missions. Yet we found no noise reduction from the second pass
of retracking in the CryoSat-2 SAR- and SARIN-mode data. The range precision
gained through the two-step retracking algorithm occurs over the 545-km wave-
length band, which reduces the observed ’bump’ in the sea level anomaly power
spectrum. The 1.5 times improvement in range precision from the 2-step retrack-
ing, combined with the 1.4 times improvement in range precision due to the in-
creased PRF of the newer altimeters, results in an overall factor of 2 improvement
in range precision.

Taken together, advancements from SAR altimetry, as well as the appli-
cation of two-step retracking to conventional altimetry, yield enhanced recovery

of sea surface slopes from CryoSat-2, Envisat, and Jason-1 data when compared
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to previous measurements from the geodetic missions of the Geosat and ERS-1

altimeters.
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Appendices

2.A Derivation of SAR Waveform Model

The model return waveform is the convolution of the combined point target
response and wave height distribution PG(7) with the area versus time function

that is also called the flat surface response function S(7).

M(1) = PG(1) * S(7) (2.25)

Here, we develop an approximation to the flat surface response function and re-
cover two dominant terms - the inverse square root of time dependence, and the
exponential decay factor. This approach is similar to earlier efforts in modelling
the CryoSat-2 SAR waveforms (Galin et al., 2013; Wingham & Wallis, 2010). The
flat surface response is proportional to the integral of the product of the beam gain
pattern B(r,#) and the square of the one-way antenna gain pattern G(r,6) over

an infinitesimal ring of equivalent range:

S(r) = H(r)Co" / B(p,0)G(p, 0) d0 (2.26)

Here, p is the radial coordinate, and # is the azimuthal coordinate in a standard
2-D polar coordinate system. We have incorporated various constant values as-
sociated with the radar instrument design in the factor C', and og is the surface
backscattering coefficient. For CryoSat-2, the antenna gain pattern can be written

explicitly as

G(p,0) = Gy exp {— [<—<pCOS i “)2) + (—(psin92— OZ)H (2.27)

71 72
where G is the boresight antenna gain. The along-track width of the antenna
pattern is v, while the across-track width is 7. The mispointing angles are denoted
by p for pitch and £ for roll. We have not included the terms related to the surface

gradient because they are very small over the ocean.
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We take a somewhat different approach than that taken in Galin et al.
(2013) for specifying the beam pattern. Their formulation incorporates a Hamming
weighting function that is employed by the official ESA processing routine to form
the synthetic Doppler beams. Meanwhile, in an earlier section of this study, we used
a simplified model where the beam pattern was approximated using rectangular
regions that decrease in area as the inverse square root of time (eq. 2.16). However,
in forming the synthetic beam located in the nadir direction, a narrow frequency
band about the zero Doppler point is selected as a result of the SAR processing.
Thus, a more realistic beam pattern would be one that is represented by a sinc()
function. To facilitate the evaluation of the ensuing integrals in the convolution,
we approximate this using a Gaussian function, with -, taken to be the beam

width:

B(r,0) = By exp [_(,0%;9)2] (2.28)

and where Bj accounts for the beam gain.
Upon making the assumption that the mispointing angles are small with
respect to the angular extent of the antenna gain pattern, it may be shown that

(2.27) can then be approximated by

S(r) = CoH(T) /exp [—%]

o[ (292 o

where the factor Cj has encapsulated several constants. This can be further ma-

nipulated using trigonometric identities,
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and after performing a suitable change of variables, the following integral repre-

sentation of the modified Bessel function of order zero Iy(x) can be invoked

2

/exp(—x cos ¢)do = 2mly(x) (2.31)
0
such that (2.30) can be evaluated:

P [ 1 11
S(7) = 4nCoH (T) exp{—%% {? + (? + ?)]}
b i 2
2

ooz 2 ()|}
X Ipd —cos20 | — +2| = — — 2.32
0{2 {’75 i (2:32)

A further simplification may be made if we assume that the beam width -, is
narrow enough that the instrument’s travel time resolution is insensitive to the
along-track position of surface area elements within the beam, allowing for the use

of the asymptotic form

In(z) = (27‘(’1’)_% exp(x) (2.33)
Applying (2.33) to (2.32) leads to

1 2

S(t) = C1H(T)-exp (_p_Q) (2.34)
P 72

where again we have collapsed the preceding constants into a single factor Cf.

Rewriting this in terms of 7 by recalling (eq. 2.6), we get

h
S(7) & CoH(r)r /712 exp <——‘;T> (2.35)
K73
As before, outlying constants have been gathered into Cy. From this expression we

see that we recover the inverse square root of time dependence, as well as get an
exponential decay factor. The decay rate is dependent on the across-track width
of the antenna gain pattern.

If we assume a Gaussian functional form for both the point target response
and the surface roughness distribution, then the convolution leading to the wave-
form model can be approximately written as the following integral, which is similar

in form to (eq. 2.17):
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M(r) = PG(r)  5(r)

+oo
N 1 he (1 —7')°
~ C / H(m""2 exp (_/1_7%) exp (_Tﬂ dr’ (2.36)

where Cj is the product of several constants. After a bit of algebra one arrives at

+o0
7’ -1 1 he 1
e =coee (53) [ o[- () = (55 =) 7] o
0
(2.37)

Note that this integral can be performed analytically using the following formula
(Gradshteyn & Ryzhik, 2000)

+oo

_1 1 (1 ¢ q

! 2 — 2 — / d / = 2 4F — o D_ 238
O/T = (P~ ) dr' = () (2) o (SP) v <(2p)5> (238)

where D_;5(x) is the parabolic cylinder function and I'(z) is the gamma function

for some argument z. Note that I'(3) = 72. We make the substitutions p = 1/(202)
and ¢ = (he/kv3) — (7/0?) so the integral becomes

“+oo

1 1 h
/ " 2exp |— [ — | 7% — —02 _ L 7| dr =
202 Kyy 02
0
O 1( he \° 1 he 72 D he T
ozexp |- | —0o exp| ——— |exp| ———= | D_ —0— —
! Py KYa P\ 72 ks P\ 710 V2\2" o

Skipping some details, the final result is

1 1 he 1 he 72 he T
M(T) =~ 040'2 exp <_§/$_f}/220') exp (—51%—7227') exp (—r‘_z) D_1/2 (5_7%0 — g)
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We take the term hco/kv3 to be small, and thus the term exp(—hco /2k73) can be
treated as being close to a constant, and the only remaining term for the argument
of the parabolic cylinder function would then be —7 /. Upon combining constants,

we arrive at

M(T) = exp (—4%:2) D_y ), <—g) exp(—ar) (2.41)
where o = he/2v3. This is the model provided in eq. (2.18) of the paper. The
parameter A is related to the maximum amplitude of the recorded waveform.

As in the case of the Brown model, we would like to compute the partial
derivatives of the model with respect to tg, 0 and A. The derivative of the model

with respect to the amplitude parameter A is simply
oM M
0A A

To compute the other derivatives we make use of the identity (DLMF, 2010)

(2.42)

% [exp (—ZZZ) D_l/Q(Z):| = —exp (—%2) D1 j5(2) (2.43)

Now, we let z = —7/0 Using the chain rule, the derivative with respect to tg
becomes
oM  OM 0z
= 2.44
Oty 0z Oty ( )

where 0z /0ty = 1/0 upon recalling that 7 =t — t,.

Using the expression above, the derivative of the model M with respect to z is

oM 22
E = —AU_1/2 exXp <—Z> Dl/g(Z) (245)
Combining terms one gets
oM _ 22
a_to = Ao 3/2 exp (-Z) Dl/g(Z) (246)

A similar approach can be used to calculate the derivative with respect to
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oM _ 0wz
do 0z Jo

By rewriting the waveform model as M = Ao~ 2 exp(—2z*/4)D_12(z), we can then

(2.47)

form the derivative from the sum of two terms. The first term is

2

8M 1 3 z
(E)l = —§A0 exp (_Z) D_1/5(2) (2.48)

The second term is

8M _5 22
(8_0>2 = —AT0 2 exp (_Z> Dy 5(2) (2.49)

Recalling that 0z/dc = 7/0?, and then by combining terms we find that

oM _ (oMY (oM
80_(901 oo /),

— Ao texp (_}122) BD_W(Z) + ng/Q(z)] (2.50)

The results are summarized in egs (2.19)-(2.21).

To obtain numerical values of the parabolic cylinder functions, we use For-
tran subroutines that are based on a library for the computation of special functions
(Zhang & Jin, 1996). The algorithms, in turn, are derived from polynomial ap-
proximations for certain ranges of the argument values as specified in (Abramowitz
& Stegun, 1964). The subroutines were modified slightly to evaluate the entire ex-
pression exp(—z?/4)D_15(z) instead of just D_j5(z).

2.B Assessment of Approximate SAR Model

Our approximation of the SAR waveform model shape is derived under the
assumptions that: (1) only the nadir-looking Doppler beam contributes signifi-
cantly to the multilooked waveform; (2) mispointing of the antenna is small com-
pared to the antenna beamwidth; (3) the half-width of the nadir-looking Doppler
beam is very narrow compared to the radius of the pulse-limited circle. It is clear

from Fig. 2.4 hat our model is not correctly fitting the toe’ of the waveform at



43

the onset of the rise of the leading edge, and from Fig. 2.5 that our model is not
estimating very low values of SWH. In this appendix we compare our model to
synthetic waveforms generated from a complete simulation of all of the important
complications in both single-looked (at nadir) and multilooked SAR waveforms
(Cotton et al., 2010).

The SAMOSA waveform model (Gommenginger et al., 2012) was developed
from physical principles, leading to a simple analytical formulation to generate 2-
D delay Doppler arrays of return power. Doppler beamforming and multilook
averaging are then applied, resulting in a model that is a function of delay time
and dependent on the parameters of SWH, backscatter and the roll and pitch
mispointing angles.

Mispointing and multilooking can have important effects on the shape of the
model waveform (Wingham et al., 2004; Cotton et al., 2010). To date there is no
completely analyt