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It was morning, and the new sun sparkled gold across the ripples of a gentle sea . . .

Jonathan Livingston Seagull
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ABSTRACT OF THE DISSERTATION

Lithospheric Bending at Subduction Zones
and
Geophysical Investigations of the Pukapuka Volcanic Ridge System,

Altimeter Gravity Lineations and South Pacific Superswell Depth Anomaly

by
Daniel A. Levitt
Doctor of Philosophy in Earth Sciences

University of California, San Diego, 1996

Professor David T. Sandwell, Chair

The dissertation consists of two unrelated parts. Chapter 2 investigates the flexural response of
subducting oceanic lithosphere worldwide. Chapters 3-5 use satllite altimeter gravity and multibeam
acoustic soundings to investigate anomalous subsidence in the southcentral Pacific, the distribution of
volcanic features on young Pacific seafloor and the devlopment of elongate Pukapuka ridges.

In chapter 2, a global study of trench flexure was performed by simultaneously modeling 117
bathymetric and satellite-derived gravity profiles. A tilt parameter is not required after age correction.
Though bending moment increases by a factor of ten with lithospheric age, systematic mechanical
thickness-age relations are obscured by inelastic bending and accumulated thermoelastic stress. The PSM
and half-space cooling models provide better fit than GDH1 to calculated bending moments and zero-
crossing depths.

In chapter 3, modal depth estimates from a multibeam bathymetry survey of the Pukapuka

volcanic system and an original age model are used to re-examine the magnitude and regional of extent of

XV
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depth anomalies attributed to the South Pacific Superswell. Modal techniques accurately estimate normal
seafloor depth in highly perturbed terrain. ETOPO-5 values in the region are shallower than survey data
suggesting that lithosphere is normal. Low subsidence for seafloor younger than 24 Ma cannot be
explained by a local hotspot or small scale convective rolls, and requires implausible crustal thickness
variation.

In chapter 4, multibeam bathymetry from the Pukapuka volcanic system is tightly fit to a small
circle model which is incompatible with established fixed hotspot model poles. Multibeam bathymetry and
corresponding altimeter gravity at the Pukapuka ridges are closely correlated. Altimeter bumps attributed
to volcanoes in this tectonically complex region are concentrated in gravity lineations troughs. Many small
melting anomalies may interact with lithospheric zones of weakness attributed to tension and boudinage.

In chapter 5, multibeam bathymetry and imagery are used to seek evidence of normal faulting and
to examine the gradation of Pukapuka volcanic features. Elongate summit vents, flank rift zones and a
crestal ridge develop with increasing height. Gradient and form linearity increase with size but azimuths
are persistently near-east-west. Morphologic resemblance to Hawaiian rift zones suggests that internal
structure and eruptive and mass-wasting modes are similar. A tectonic tensional stress is likely to control

azimuthal elongation within the edifice and during melt ascent.
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CHAPTER 1

INTRODUCTION AND ORGANIZATION OF THESIS

The exploration of geological and geophysical processes occuring beneath the world ocean has
expanded enormously with the initiation of ship-board acoustic surveying and the development of a global
satellite altimeter gravity map. In particular, multi-narrow-beam sonar developed in the 1970's has
revealed both the location and morphologic shape and structure of tectonic and volcanic features such as
fracture zones, spreading centers and volcanic chains. Together with a suite of geophysical probing
techniques including marine gravity, magnetics and seismics as well as heat flow and dredge-sample
geochemical analysis, geologists operating in the marine environment have rivaled the geological
sophistication of their continental counterparts. Because sea-going research is expensive, the global
coverage availed by satellite altimeter gravity anomaly maps has critically supplemented existing
bathymetric information in regions where surveying is poor, in the southern oceans and for small features.
In concert, these sources of data continue to elucidate the surficial distribution of volcanic and tectonic
features and their inter-relation.

At the same time, marine geophysical research has been directed upward from a fundamental basis
of only a few cooperative overarching theoretical systems or paradigms (also born in the 1960's and 1970's)
— the plate tectonics hypothesis, that the surface of the earth is composed of lithospheric plates which

respond to stress rigidly and are driven by the negative bouyancy of subducted slabs, the hotspot
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hypothesis, that deep mantle plumes produce volcanic chains recording plate motion directions, and the
half-space cooling model, that lithosphere cools and thickens and seafloor deepens with age. In the last 25
years a number of theories have extended predictions of the mechanical and geodynamic behavior of
oceanic lithosphere. For example, studies of load compensation due to seamounts, subduction zone
bending and at fracture zones has shown that the mechanical thickness of oceanic lithosphere increases
with age, roughly following the cooling model. Also, though the mantle convects on various length scales,
the mantle-plume reference frame has grown to constitute a fixed absolute frame of reference such that the
rotation pole prescribed based on one volcanic chain can be used to predict the age progression and
orientation of other chains on the same plate for the same period of time. Conversely, second order
questions have arrisen where the overarching principles have failed and where additional detail has been
discovered not predicted by these paradigms. For example, careful investigation of radiometric ages from
sequencial volcanic chain edifices has been commonly inconsistent with the monotonic age prediction of
the hotspot hypothesis. Also, many unusual observations in the southcentral Pacific including anomalous
low regional subsidence rates and altimeter gravity lineations has prompted the small-scale convection
hypothesis in order to supply additional heat to the lithosphere. Recently a great deal of emphasis has been
focused, using submersible equipment, on determining the fine scale volcanic processes occurring on the
ocean floor, including factors controling volcano emplacement (at spreading centers and for well surveyed
volcanoes), melt genesis and ascent.

The research presented in this dissertation is essentially a sequence of tests of major paradigms
listed above. The chapter order is chronological. While projects are nearly independent the latter three
(chapter 3-5) share data and scope. From December of 1992 through February of 1993 I participated in two
consecutive legs of the Gloria expedition aboard the R/V Mellvile in the southcentral Pacific. This survey
of the Pukapuka volcanic system comprises the primary source of data for chapters 3-5. Research
undertaken prior to this expedition is presented in chapter 2.

Since the mid 1970's mounting evidence has suggested that the elastic thickness of oceanic

lithosphere, the thickness to a particular isotherm, monotonically increases with the square root of age.
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Confidence in the regularity of this relation has extended to prediction, so that overly thin results are
considered anomalous. Chapter 2 simultaneously models a global set of satellite gravity and ship-sounding
profiles to explore the flexural response to loading at subduction zones, in order to test the relation between
age and elastic thickness as well as proposed perturbations due to inelastic bending and thermal pre-
stressing. A recent re-evaluation of seafloor depths and heat flow has suggested that normal lithospheric
cooling with age (the half-space model), interrupted by a large supply of heat to the base of the lithosphere
(plate model), is better approximated by a shorter distance to the basal isotherm. The bending moments
supported at subduction zone locations are used to test the maximum bending moments predicted for
proposed plate and half-space models.

While the depth-age relation of seafloor is remarkably regular, distinct regions of seafloor exhibit
depth anomalies which are departures from this relation. Shallowing associated with volcanic chains has
been attributed to dynamic uplift and/or thermal rejuvination by a convective heat source in the mantle,
such as a hot plume. The superswell hypothesis was advanced to explain a number of observations, most
importantly, a regional depth anomaly in a bathymetry grid which increases broadly with age even where
there are no hotspots. In chapter 3, a suite of multibeam surveys from a portion of the proposed Superswell
region away from known hotspot tracks are tested for a long-wavlength depth anomaly. Since the surveys
are focused about volcanically perturbed terrain, "normal" seafloor depths are estimated with a mode.

Volcanoes on the young portion of the Pacific Plate, south of the Marquesas Fracture Zone have
been variably attributed to small hotspots, parallel asthenospheric convective rolls and magma escape
through extensional faults. Chapter 4 presents tests of primary predictions of these models for the
Pukapuka volcanic system and other volcanoes on young Pacific seafloor south of the Marquesas Fracture
Zone. First, the close alignment of Pukapuka volcanic features is compared with the orientation predicted
by the 0-18 Ma fixed hotspot absolute rotation pole. Next, the topographic and satellite altimeter signals
of Pukapuka volcanoes are compared in order to test the reliability of satellite altimeter gravity as a proxy

for topography. Finally, I test whether small altimetric bumps attributed to volcanic features are
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preferrably located in peaks or troughs of gravity lineations, respectively predicted by convective and
stretching models.

Finally, in chapter 5 I consider potential factors which influence the remarkably consistent
azimuth and elongation of prism-shaped Pukapuka volcanoes in an area which is expected to have been
subject to anisotropic tension. Normal faults predicted by the extension model are sought in multibeam
bathymetry and sidescan image datasets. Morphologic and structural characteristics and gradational
morphometric systematics with form are used to investigate the potential role of deviatoric stress,
lithospheric thickness and magmatic flux. The resemblance of features to a well studied analog, Hawaiian

flank rift zones, is considered as well as processes occuring within growing edifices and during melt ascent.
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CHAPTER 2

LITHOSPHERIC BENDING AT SUBDUCTION ZONES

BASED ON DEPTH SOUNDINGS AND SATELLITE GRAVITY



’))1""""""lllDIIIDDDDDDIIDDIIDDDDDDDD

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 100, NO. B1, PAGES 379400, JANUARY 10, 1995

Lithospheric bending at subduction zones based on depth

soundings and satellite gravity

Daniel A. Levitt and David T. Sandwell
Scripps Institution of Oceanography, La Jolla, California

Abstract. A global study of trench flexure was performed by simultaneously modeling 117
bathymetric profiles (original depth soundings) and satellite-derived gravity profiles. A thin,
elastic plate flexure model was fit to each bathymetry/gravity profile by minimization of the L,
norm. The six model parameters were regional depth, regional gravity, trench axis location,
flexural wavelength, flexural amplitude, and lithospheric density. A regional tilt parameter was
not required after correcting for age-related trend using a new high-resolution age map. Estimates
of the density parameter confirm that most outer rises are uncompensated. We find that flexural
wavelength is not an accurate estimate of plate thickness because of the high curvatures observed at
a majority of trenches. As in previous studies, we find that the gravity data favor a longer-
wavelength flexure than the bathymetry data. A joint topography-gravity modeling scheme and fit
criteria are used to limit acceptable parameter values to models for which topography and gravity
yield consistent results. Even after the elastic thicknesses are converted to mechanical thicknesses
using the yield strength envelope model, residual scatter obscures the systematic increase of
mechanical thickness with age; perhaps this reflects the combination of uncertainties inherent in
estimating flexural wavelength, such as extreme inelastic bending and accumulated thermoelastic
stress. The bending moment needed to support the trench and outer rise topography increases by a
factor of 10 as lithospheric age increases from 20 to 150 Ma; this reflects the increase in saturation
bending moment that the lithosphere can maintain. Using a stiff, dry-olivine rheology, we find
that the lithosphere of the GDH1 thermal model (Stein and Stein, 1992) is too hot and thin to
maintain the observed bending moments. Moreover, the regional depth seaward of the oldest
trenches (~150 Ma) exceeds the GDH1 model depths by about 400 m.

Introduction

Analysis of the flexural response of the lithosphere to
loading at seamounts, trenches and fracture zones has provided
estimates of the mechanical thickness (h,) of oceanic
lithosphere as a function of age, generally confirming an age-
thickening relationship [Watts, 1978; Caldwell and Turcotte,
1979] in accordance with lithospheric cooling models
[Turcotte and Oxburgh, 1967, McKenzie, 1967, Parsons and
Sclater, 1977). The base of the mechanical lithosphere,
defined as the depth to which deviatoric stress can be
maintained over geological timescales, is believed to
correspond to a specific isotherm. Estimates of mechanical
thickness have been obtained by modeling flexural behavior
as elastic [Turcotte, 1979], as elastic-plastic with constant
yield strength [McAdoo et al., 1978], as elastic-plastic with
variable yield strength [Goetze and Evans, 1979] and as
viscous [DeBremaecker, 1977). Presently, models employing
elastic and elastic-plastic theory are preferred, though
horizontal stress components are often deemed necessary in
order to optimally reduce data misfit [Parsons and Molnar,
1976, McQueen and Lambeck, 1989). In order to keep the data
analysis simple, the classic approach estimates the thickness
of a thin elastic plate (h,) that approximates the flexural
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behavior of the real lithosphere [Gunn, 1943; Watts, 1978].
These elastic model parameters can then be used to establish
the mechanical thickness (h,,) of an elastic-plastic lithosphere
by assuming a given rheology (McNutt and Menard, 1982;
McNutt, 1984] or lithospheric viscosity [DeBremaecker,
1977].

At many trenches the large curvatures of the flexed
lithosphere cause brittle fracture of the upper lithosphere and
ductile flow of the lower lithosphere so that the estimated
elastic thickness is much less than the true mechanical
thickness; at seamounts, smaller curvatures result in less
fracture and flow so that h, is a good approximation of A,,.
Following the method of McNutt and Menard [1982], true
mechanical thickness values can be estimated based on the
elastic thickness and curvature. Nevertheless, the current
database of thickness estimates displays a distinct bimodality
between h,, values deduced at seamounts and trenches [Wessel,
1992]. One possible explanation of this is that thermal
bending stress due to cooling of the lithosphere with age can
prestress the flat-lying plate so that when it is bent concave
downward (trench) it appears stronger than when it is bent
concave upward (seamount) [Wessel, 1992].

Present published results concerning trench flexure have
been obtained from a composite of mixed data sources
(topography, geoid, and gravity) as well as a variety of
analytical techniques. Having limited computer power,
Caldwell et al. [1976), Caldwell and Turcotte [1979], Jones et
al. [1978], and Turcotte et al. [1978] determined elastic

thickness for topographic profiles by measuring the distance
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between the first zero crossing and the outer rise peak x, after
arbitrarily assigning a baseline local depth. McNutr [1984]
utilized a similar technique on topographic profiles generated
from contour maps. Bodine and Watts [1979] did not estimate
elastic thickness but assumed the base of the elastic layer was
defined by the 500°C isotherm; they then varied the amplitude
of the flexure wj to best match eight topographic profiles.
McAdoo et al. [1978] fitted topographic and gravity profiles
to model-generated flexural deflection curves. McAdoo and
Martin [1984) and McAdoo et al. (1985] generated estimates of
flexural wavelength a and wy, from an ensemble of Seasat
geoid observations. Carey and Dubois [1981] used a finite
clement method with specific point determination on
topographic and seismic data. Judge and McNutt [1991]
utilized a composite topography-geoid-gravity database to
estimate the elastic thickness and plate curvatures at the Peru
and Chile Trenches. A potential problem with their analysis is
the use of highly interpolated topographic profiles where the
interpolation algorithm uses thin, elastic plate flexure theory
to fill the gaps [Smith, 1993]. McQueen and Lambeck [1989]
fitted thin, elastic plate flexure models to 14 topographic
profiles across the major western Pacific trenches where they
specifically included model parameters for regional depth,
regional slope, and first zero crossing location. By
simultaneously minimizing these parameters along with the
standard flexural parameters, they found a very wide range of
acceptable models and suggested that estimates of elastic
thickness from all previous studies are very uncertain.

The purpose of this study is to perform a uniform, unbiased
analysis of global trench flexure by using original
bathymetric soundings combined with a newly constructed
global gravity grid derived from ERS 1, Geosat, and Seasat

altimetry data [Sandwell and Smith, 1992]). Trench outer rise
profiles are obtained from a global database of original
geophysical data [Smith, 1993]. Many (117) profiles are
selected in an effort to sample a range of relevant parameters
such as lithospheric age, geographic location, subduction rate,
slab dip, and slab depth (Figure 1). In order to maximize data
quality and consistency, profiles are located in close
proximity to long, approximately trench-normal bathymetric
tracks. Free air gravity anomalies are extracted from a global
grid of satellite altimetry data [Sandwell and Smith, 1992)
along the topographic profiles. We simultaneously model
trench outer rise topography and gravity using a thin elastic
plate flexure model. but in contrast to previous studies, we also
specifically include regional depth and first zero crossing
position as model parameters. By using an improved seafloor
age model [Roest et al., 1992] we are able to correct the
topographic profiles for regional slope so that this parameter
is not required. Later we interpret these results in terms of
yield strength envelope models.

Stein and Stein [1992] have recently developed a model of a
thinner. hotter lithosphere (GDHI1) than the plate (PSM) and
half-space (HS) models of Parsons and Sclater [1977] in an
effort to explain depth/age and heat flow/age observations for
old oceanic lithosphere. More than 50 of our flexure profiles
cross old lithosphere (100-140 Ma), where the differences in
the predictions of these models is greatest, thus allowing for
discrimination between lithospheric thermal models on the
basis of their respective predicted mechanical properties. We
use the regional depth, the bending moment needed to support
the outer rise, and the mechanical thickness obtained at these
sites to place constraints on the asymptotic lithospheric
thickness.

20°N

20°S

40°S

90°E 120°E

150°E 180°E

Figure la. Global great circle profile location map of Java, Kermadec, Marianas, Philippines, and Tonga

Trenches. End points are presented in Table 1.
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Figure 1b. Global great circle profile location map of Aleutians. Bonin, Japan, and Kuril Trenches. End

points are presented in Table 1.

Flexure Model

In the elastic flexure model (Gunn, 1943; Watuts, 1978], the
thin plate is acted upon by a restoring force g(p,, - p,,)w, where
w is the plate deflection, g is average gravity, and p,, and p,,
are mantle and water density, respectively. If the applied load
comprises a horizontal force P and a bending moment M the
equilibrium equation is [Turcotte and Schubert, 1982]

&M, pdw -
EL+ PEX - o(py-pw=0, M
dx*  dx?
where the bending moment M is related to the negative
curvature of the plate by the flexural rigidity D:

M=Ddw o)
dx?

Parsons and Molnar [1976] demonstrate that the end load is
only an important factor in modeling flexure profiles when it
is a substantial fraction of the load required to buckle the
lithosphere. Tectonic regimes landward of subduction zones
do not show evidence for large compressive stress (~500 MPa)
[{Molnar and Atwater, 1978] and in many cases are sites of
extension and spreading. Furthermore, S. Mueller and R. J.
Phillips  (unpublished manuscript, 1992) found, from
synthetic profile analysis, that inplane stress regime cannot
be reliably constrained by attempting to recover parameters
from best fitting elastic profiles, even with respect to
distinguishing between compression and tension. Therefore
we do not include the end load as a parameter in our flexural
modeling. Under these simplifications and assumptions, a
model for the deflection of the plate in response to an applied
bending moment M, is

w(x) =w, cxp[M} sin [(L—“—)} +5(x-x)+d,, 3)
fod o

where w, is the flexural amplitude parameter, x, is the location
of the load, s is the tilt parameter, d,, is the undeflected depth ,
and ais the flexural parameter (Figure 2). The flexural
parameter is related to the elastic thickness h, by

~ ER i

3(pu-pu) g (1-vY
where E is Young's modulus and v is Poisson's ratio. Later we
will show that the tilt parameter is not needed if the regional
depth versus age relation is accounted for using an accurate age
model.

In order to discriminate between uncompensated
topographic variation due to flexure and unrelated topographic
deflection, we utilize gravity profiles corresponding to the
topographic profiles. Following McAdoo et al. [1978], a
modified Bouguer approximation is used to determine gravity,
and we include the approximate reduction in gravity amplitude
due to upward continuation of a constant wavelength signal
(2nc) from the crust/water interface at a mean ocean depth of d,
as well as the mantle/crust interface at an additional crustal
thickness depth he.  The attenuated gravity anomaly amplitude
is thus obtained by

Ag(x) = 2nGp,w, exp [(—Xax—")] sin[(x—'axa—)—]

. {(__pc-P\.-) exp['—d"-] +(-—-——p'"-pc) exp[——_(d"”k)]’ + Ago )
Prm=Pw @ Prm=Pw «

where G is the gravitational constant, Ag, is the mean

regional gravity anomaly, and p, is a density parameter which

measures the density of the mantle relative to sea water density
(Figure 2).

The overall objective of the modeling is to establish a set of

parameters which sensitively characterize the flexural

“
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Figure 1c. Global great circle profile location map of Antilles, Chile, Middle America, Peru, and Shetland
Trenches. Sandwich profile (113) is not shown for display purposes. End points are presented in Table 1.

behavior of plates experiencing bending at subduction zones.
Therefore we wish to find the smallest number of parameters
which will simultaneously minimize the misfit between the
models (3) and (5) and the topography and gravity data. The
most important issue, however, is not the modeling method
but the selection, quality and treatment of the data.

Data

Bathymetry

A total of 117 projected great circle bathymetric profiles
were obtained for 16 trench-outer rise complexes (Figure 1 and
Table 1). Data were acquired from the Lamont-Doherty Earth
Observatory on-line geophysical database [Smith, 1993]
using GMT software [Wessel and Smith, 1991]. No effort was
made to exclude profiles that had poor trench-outer rise
signatures unless some obvious feature obscured the trench
signature (e.g., aseismic ridges, complete sediment fill, or

indeterminate trench axis location). Later on we use objective
criteria to quantitatively eliminate poorly fit profiles. Within
a particular complex, projected profile endpoint pairs (trench
axis and basin) were selected so that the connecting great
circles were in close proximity to long, continuous, straight,
nearly trench-normal bathymetric ship tracks. All track data
points which fell within a 100-km band of the great circle were
retained and projected onto the great circle line. Typical
bathymetric profiles are continuous and over 800 km in
length, thus constraining mean ocean depth and regional tilt,
and are usually less than 20° from norinality to trench trend,
minimizing cross trend topographic effects.  In order to
correct data for nonnormality, distance values were multiplied
by cos@, the angle between the profile and trench-
perpendicular azimuths.

Before modeling, gross errors must be corrected in order to
reduce deflection perturbation and density bias. Travel time
errors occasionally arise due to an ambiguity in analog
precision depth recorder (PDR) records [Smith, 1993]. For a
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TOPOGRAPHY MODEL

wix)

M,

GRAVITY MODEL

Ag(x)

Figure 2. Schematic representation of topography (w,, x,,
a. and d,) and gravity (w,, x,, &, and g,) model parameters,
where w, ~ 3.10 w,. See equations (3) and (5) for details of the
model. Combined model (topograv) contains all of the above
parameters and p,. After application of a depth versus age
correction, a regional slope parameter was not required.
Topograv parameters are bold.

given trench profile, this error may result in a DC shift of
bathymetric depths, appearing as a parallel set of depths above
or below the general trend of values. Since these values are
clearly erroneous, they were eliminated from each profile
before any other processing was performed.

Indiscriminate data acquisition usually results in a
nonuniform density of data throughout the profile length
(Figure 3, points): crossing tracks result in dense sampling,
while course changes and jumps result in data gaps. In order to
reduce the biasing effects of erratic densities upon the
modeling, a filter was applied to the raw data set. The median
value within a 2-km moving window was retained at a 1-km
spacing, and importantly, gaps were not filled with dummy
values [Wessel and Smith, 1991]. A robust median filter was
employed instead of a mean filter so as to minimize the
weighting effects of outliers. The filter generally reduced the
quantity of data by an order of magnitude while retaining the
short-wavelength topographic variations (Figure 3).

The two-way travel time from which depths are determined is
a function of the velocity structure of the water column, which
is in turn a function of salinity, temperature, and pressure.
Smith [1993] reports that these variations in the velocity are
ignored and a nominal velocity is arbitrarily assigned to all
bathymetric data, resulting in 5% inaccuracies. These nominal
depths can be corrected to a first approximation by utilizing
tabulated regional depth-related correction factors, or Carter
[1980] tables. The filtered profile data were Carter-corrected,
having minimal effect for shallow and middepth data, and
significant effect with respect to deep-water values.

Thick layers of sediment on the basement topography
adversely influence estimates of model parameters in (3). A
uniform thickness layer of sediments will reduce the estimate
of d,, while extreme (>400 m) variations in sediment
thickness will affect the o estimate, particularly where near the
outer trench slope and outer rise. We have not accounted for
sediment thickness mainly because sediment thickness data are
not available along most of the profiles. Moreover, later we
show that where sediment thickness is highly nonuniform, the
gravity and bathymetry data will yield inconsistent models
that are eliminated from further analysis.

It is known that ocean bottom depth increases with age
[Parsons and Sclater, 1977]. Lithospheric ages may vary by
tens of millions of years along trench profiles, resulting in
age-related depth variation of hundreds of meters, particularly
for "young" profiles. In order to minimize this effect, an age-
related depth correction was applied to the Carter-corrected
profiles. Ages were assigned to every point on a given profile
based on a two-dimensional interpolation of an age grid [Roest
et al., 1992]. Then each point was corrected for age effects by
subtracting the appropriate age formula [Parsons and Sclater,
1977]. For points younger than 20 Ma, we deduct a predicted
depth dyge:

dyge = 2500 + 350 V¢ (6)

where tis age in Ma. For points older than 20 Ma the
correction formula is

duge = 6400 - 3200 ex (-' ) o
2 p 5238 @

While this depth-age relationship is known to be variable
throughout the ocean basins [Cochran, 1986, Hayes, 1988;
Marty and Cazenave, 1989], it is only the first-order depth
variations that influence the flexural modeling, since
interregional anomalous subsidence will not result in
significant differential depth correction within a particular
profile. An example of the age correction is shown in Figure
3, top curve; the age correction brings the entire profile to
near zero depth.

Local perturbations along profiles due to the presence of
seamounts and aseismic ridges were reduced by clipping the
topographic highs above a uniform depth. Though such
correction often improves the apparent quality of a profile,
results obtained from profiles in which topographic noise is
substantial must be considered poor.

Gravity

Gravity anomalies were extracted from a global gravity grid
[Sandwell and Smith, 1992] which is derived from a
combination of ERS 1, Geosat, and Seasat altimeter profiles
using the method of Sandwell [1984, 1992]. For areas south of
30°S, where the density of Geosat profiles is relatively high,
the satellite-derived gravity anomalies have a precision of 5.5-
7 mGal [Sandwell, 1992; Neumann et al., 1993]. In
midlatitude areas, where the track density is worse, the
anomalies are less accurate, especially at short waveléngths.
However, since gravity amplitudes at trenches usually exceed
100 mGal and generally have wavelengths greater than the
satellite track spacing (< 60 km), we believe that they are
sufficiently accurate.

10
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